The ball will decelerate as it moves upwards.
The magnitude of the ball's acceleration is 0.3 m/s² and it directed backwards.
The given parameters;
- initial velocity of the ball, u = 1.25 m/s
- time of motion of the ball, t = 4.22 s
As the ball rolls up the inclined plane, the velocity decreases and eventually becomes zero when the ball reaches the highest point of the plane.
Thus, the ball decelerate as it moves upwards.
The acceleration of the ball is calculate as;
<em>at the highest point on the incline plane, the final velocity </em><em> is zero</em>
Thus, the magnitude of the ball's acceleration is 0.3 m/s² and it directed backwards.
Learn more here:brainly.com/question/23860763
GPE=mgh
m= 12.5kg
g= 9.81 always
h=?
568=12.5*9.81*h
Solve for h
You will get 4.63m
Answer:
Explanation:
A closed system can exchange energy but not matter, with its surroundings. An isolated system cannot exchange any heat, work, or matter with the surroundings, while an open system can exchange energy and matter.
Hope this helped you!
#1 is 12 u just have to count that one was counting by 5's figure out the pattern on what its counting by and start at the bottom and count your way up till you get to the shaded line
False.
The mass of a softball is approximately 200 g (0.2 kg), while the knees are located approximately at 30 cm (0.3 m) from the ground. It means that the gravitational potential energy of the ball when it is dropped is
This corresponds to the total mechanical energy of the ball at the moment it is dropped, because there is no kinetic energy (the ball starts from rest). Then the ball is dropped, and just before it hits the ground, all this energy is converted into kinetic energy: but energy cannot be created, so its final kinetic energy cannot be greater than 0.6 J.