Answer:
(a) 0.0113 ±0.0001 inches
(b) 5 decks
Explanation:
<u>Given information</u>
52 cards, thickness is 0.590 ±0.005 inches
Since this is thickness of all the cards, to get the thickness of a single card we divide the total thickness (plus uncertainty) by the number of cards hence
1 card=
±
= 0.0113461 ±0.000096 inches
Considering that thickness is given to 3 significant figures while uncertainty is to 1 significant figure, the final answer should also conform to these hence giving the first part of the answer to 3 significant figures while second part to 1 significant figure yields 0.0113 ±0.0001 inches
(b)
Considering that the cards have uncertainty of 0.0001 inches and the number of decks, n required to create uncertainty of 0.00002 inch is given by

We need 5 decks for the given uncertainty
Answer:
The tension in the tow rope pulling the log is 784.61 N
Explanation:
Given:
v = speed = 13 m/s
Pf = final power when the log is pulled = 8.5x10⁴W
Pi = average power = 7.48x10⁴W
The force required to move a car is equal to:


T = Ff - Fi = 6538.46 - 5753.85 = 784.61 N
Answer:
Part a)

Part b)

Part d)
As we know that due to induction of charge there will be same charge appear on the inner and outer surface of the cylinder but the sign of the charge must be different
On the inner side of the cylinder there will be negative charge induce on the inner surface and on the outer surface of the cylinder there will be same magnitude charge with positive sign.
Explanation:
Part a)
By Guass law we know that



Part b)
Outside the outer cylinder we will again use Guass law



Part d)
As we know that due to induction of charge there will be same charge appear on the inner and outer surface of the cylinder but the sign of the charge must be different
On the inner side of the cylinder there will be negative charge induce on the inner surface and on the outer surface of the cylinder there will be same magnitude charge with positive sign.
Answer:
P = 1471500 [Pa]
Explanation:
We must remember that pressure is defined as the relationship between Force over the area.

where:
P = pressure [Pa] (units of pascals)
F = force [N] (units of Newtons)
A = area of contact = 4 [cm²]
But first we must convert from cm² to m²
![A = 4[cm^{2}]*\frac{1^{2} m^{2} }{100^{2} cm^{2} }](https://tex.z-dn.net/?f=A%20%3D%204%5Bcm%5E%7B2%7D%5D%2A%5Cfrac%7B1%5E%7B2%7D%20m%5E%7B2%7D%20%7D%7B100%5E%7B2%7D%20cm%5E%7B2%7D%20%7D)
A = 0.0004 [m²]
Also, the weight should be calculated as follows:

where:
m = mass = 60 [kg]
g = gravity acceleration = 9.81 [m/s²]
Now replacing:
![w = 60*9.81\\w = 588.6[N]](https://tex.z-dn.net/?f=w%20%3D%2060%2A9.81%5C%5Cw%20%3D%20588.6%5BN%5D)
And the pressure:
![P=588.6/0.0004\\P=1471500 [Pa]](https://tex.z-dn.net/?f=P%3D588.6%2F0.0004%5C%5CP%3D1471500%20%5BPa%5D)
Because 1 [Pa] = 1 [N/m²]
The air pressure inside the balloon is: 0.1432 Pa
The formulas and procedures that we will use to solve this problem are:
Where:
- a = area of the sphere
- r = radius
- π = mathematical constant
- P = Pressure
- F = Force
- a = surface area
Information about the problem:
- r = 5.0 m
- F = 45 N
- 1 Pa = N/m²
- 1 N = kg * m/s²
- a=?
- P=?
Using the formula of the sphere area we get:
a = 4 * π * r²
a = 4 * 3.1416 * (5.0 m)²
a = 314.16 m²
Applying the pressure formula we get:
P = F/a
P = 45 N/314.16 m²
P = 0.1432 Pa
<h3>What is pressure?</h3>
It is a physical quantity that expresses the force applied on the area of a surface.
Learn more about pressure at: brainly.com/question/26269477
#SPJ4