Answer:
E) NaF and SrO
Explanation:
The ionic bonding occurs between atoms with a great difference in electronegativity. This usually happens between a metal and a non-metal.
<em>In which pair do both compounds exhibit predominantly ionic bonding? </em>
A) KCl and CO₂. NO. C and O are non-metals and present covalent bonding.
B) SO₂ and BaF₂. NO. S and O are non-metals and present covalent bonding.
C) F₂ and N₂O. NO. Both compounds contain non-metals and present covalent bonding.
D) N₂O₃ and Rb₂O. NO. N and O are non-metals and present covalent bonding.
E) NaF and SrO. YES. Na and Sr are metals while F and O are non-metals.
Answer:

Explanation:
Hello,
In this case, for the given reaction:

We find a 1:2 molar ratio between the acid and the base respectively, for that reason, at the equivalence point we find:

That in terms of concentrations and volumes we can compute the concentration of the acid solution:

Best regards.
Answer:
The pressure of CO2 = 0.48 atm
Explanation:
Step 1: Data given
Kp = 0.23
Step 2: The balanced equation
2NaHCO3(s) ↔ Na2CO3(s) + CO2(g) + H2O(g)
Step 3: Calculate the pressure of CO2
Kp = (p(CO2))*(p(H2O))
For 1 mol CO2 we have 1 mol H2O
x = p(CO2) = p(H2O)
Kp = 0.23 = x*x
x = √0.23
x = 0.48
pCO2 = x atm = 0.48 atm
The pressure of CO2 = 0.48 atm
The rate at which a radioactive<span> isotope decays is measured in </span>half-life. The termhalf-life<span> is defined as the time it takes for one-</span>half<span> of the atoms of a </span>radioactive material<span> to disintegrate. </span>Half-lives<span> for </span>various radioisotopes<span> can range from a few microseconds to billions of years.
</span>.
back at it again with that answer
.
zane
Answer:
C. The reaction is energetically favorable.
Explanation:
The reaction which shows the removal of the terminal phosphate from the ATP is shown below:

The Gibbs' free energy change of this reaction, 
Hence, Option A is not correct.
It is a type of hydrolysis reaction in which water is being added to the molecule.
Hence, Option B is not correct.
The Gibbs' free energy change is negative which means that the reaction is energetically favorable.
Option C is correct.