We use the formula V=IR where I is current, v is voltage, and R is resistance. This is V=(3)(10) which is 30 Volts, answer choice (c)
We want to know what does the fact that Mercury has no atmosphere tell us. Since Mercury has no atmosphere it cant reflect a lot of sunlight that is hitting its surface. Its constantly being hit by solar wind. So Mercury reflects a small percentage of the sunlight that strikes it.
The area of a triangle is found by multiplying the height of the triangle by the length of the base and dividing them both by 2. The length of the shorter side in the equation is useless information, so just multiply 39 by 25 and divide that by 2. A=487.5 sq ft. Also, that's a pretty big kite.
Newton's 2nd law:
Fnet = ma
Fnet is the net force acting on an object, m is the object's mass, and a is the acceleration.
The electric force on a charged object is given by
Fe = Eq
Fe is the electric force, E is the electric field at the point where the object is, and q is the object's charge.
We can assume, if the only force acting on the proton and electron is the electric force due to the electric field, that for both particles, Fnet = Fe
Fe = Eq
Eq = ma
a = Eq/m
We will also assume that the electric field acting on the proton and electron are the same. The proton and electron also have the same magnitude of charge (1.6×10⁻¹⁹C). What makes the difference in their acceleration is their masses. A quick Google search will provide the following values:
mass of proton = 1.67×10⁻²⁷kg
mass of electron = 9.11×10⁻³¹kg
The acceleration of an object is inversely proportional to its mass, so the electron will experience a greater acceleration than the proton.
Answer:
22.36 rad
Explanation:
Applying,
ω = θ/t.............. Equation 1
Where ω = angular velocity, θ = angular displacement of the baseball, t = time
make θ the subject of the equation
θ = ωt............... Equation 2
From the question,
Given: ω = 350 rev/min = 350(0.10472) = 36.652 rad/s, t = 0.61 s
Substitute these values into equation 1
θ = 0.61(36.652)
θ = 22.36 rad
Hence the angular displacement of the baseball is 22.36 rad