Answer:
The force when θ = 33° is 1.7625 times of the force when θ = 18°
Explanation:
The force on a moving charge through a magnetic field is given by
F = qvB sin θ
q = charge of the moving particle
v = Velocity of the moving charge
B = Magnetic field strength
θ = angle between the magnetic field and the velocity (direction of the motion) of the moving charge
Because qvB are all constant, we can call the expression K.
F = K sinθ
when θ = 18°,
F = K sin 18° = 0.309K
when θ = 33°, let the force be F₁
F₁ = K sin 33° = 0.5446K
(F₁/F) = (0.5446K/0.309K) = 1.7625
F₁ = 1.7625 F
Hope this Helps!!!
1 to 5 would be your answer
Answer:
R = 7 [amp]
Explanation:
To solve this problem we must use ohm's law which tells us that the voltage is equal to the product of the current by the resistance. In this way, we have the following equation.
V = I*R
where:
V = voltage = 49 [V] (units of volts)
I = current = 7 [amp] (amperes)
R = resistance [ohms]
Now clearing R.
R =V/I
R = 49/7
R = 7 [amp]
Force = mass × acceleration = kg × m/s^2 = Newton
Answer:
Part a)
a = -9.81 m/s/s
Part b)
v = 0
Part c)
v = 9.81 m/s
Part d)

Explanation:
Part a)
During the motion of ball it will have only gravitational force on the ball
so here the acceleration of the ball is only due to gravity
so it is given as

Part b)
As we know that ball is moving against the gravity
so here the velocity of ball will keep on decreasing as the ball moves upwards
so at the highest point of the motion of the ball the speed of ball reduce to zero

Part c)
We know that the total time taken by the ball to come back to the initial position is T = 2 s
so in this time displacement of the ball will be zero



Part d)
at the maximum height position we know that the final speed will be zero
so we will have

here we have

