Answer:
Part A
The intensity is
Part B
The intensity is 
Explanation:
From the question we are told that
The intensity of the light detected by first eye is 
Now at initial state according the question the light ray is perpendicular to the eye so it means that it is at 90° the eye
Now the first question is to obtain the intensity the first eye (the first in this case is the one focused on the light )would detect when the head is rotated by 20° its previous orientation
This is mathematically evaluated as

Now the second question is to obtain the intensity the first eye (the first eye in this case is the one that is not focused on the light )would detect when the head is rotated by 20° its previous orientation
Now in this case the angle between the eye and the light is 90-20 = 70°
So


The way I do it is suddenly, in the same sort of way that magicians try to pull a table cloth off a table when there's things on the table cloth.The sudden approach acts as an impulse of force and starts to accelerate the roll. But, the piece (assuming it has perforations) is off the roll before the roll can move, due to inertia. Then the roll will acclerate, move, slow down and stop. However, in accelerating, the roll will unravel. The bigger the impulse the more it will unravel.+++++++++++++++++++++++++++++++++++++++If on the other hand, the piece of paper is held firmly, and the roll is pulled, then the impulse is presumably given to the paper and the hand whose inertia is a lot more than that of the roll. So, I think I'd actually go for choice c)+++++++++++++++++++++++++++++++++++++This assumes that the roll is free to rotate.I think that a similar idea is behind the design and use of a "ballistic galvanometer". The charge is passed through the galvanometer quickly, as a current pulse. Then the needle starts to deflect, and the deflection is arranged to depend on the total charge that has passed through in the time of the current pulse.
Answer:
Leak 1 = 3.43 m/s
Leak 2 = 2.42 m/s
Explanation:
Given that the top of the boot is 0.3 m higher than the leaks.
Let height H = 0.3m and the acceleration due to gravity g = 9.8 m/s^2
From the figure, the angle of the leak 1 will be approximately equal to 45 degrees. While the leak two can be at 90 degrees.
Using the third equation of motion under gravity, we can calculate the velocity of leak 1 and 2
Find the attached files for the solution and figure
Answer:
The answer is a for Plato users.
Explanation:
Since the angle of the refracted ray moves away from the normal, it must be traveling in a faster medium.
To solve this problem it is necessary to use the concepts related to Snell's law.
Snell's law establishes that reflection is subject to

Where,
Angle between the normal surface at the point of contact
n = Indices of refraction for corresponding media
The total internal reflection would then be given by





Therefore the
would be equal to



Therefore the largest value of the angle α is 30.27°