Answer:
3.6m
Explanation:
if you are at a building that is 46m above the ground, and the professor is 1.80m, the egg must fall:
46m - 1.80m = 44.2m
the egg must fall for 44.2m to land on the head of the professor.
Now, how many time this takes?
we have to use the following free fall equation:

where
is the height,
is the initial velocity, in this case
.
is the acceleration of gravity:
and
is time, thus:

clearing for time:

we know that the egg has to fall for 44.2m, so
, and
, so we the time is:

Finally, if the professor has a speed of
, it has to be at a distance:

and t=3.002s:

so the answer is the professor has to be 3.6m far from the building when you release the egg
Answer:
14.8 kg
Explanation:
We are given that




We have to find the mass of the pulley.
According to question



Moment of inertia of pulley=

Where 



Hence, the mass of the pulley=14.8 kg
Umm I think that it's called a run off! Because it's running off of a surface into water.
Answer:
R = 1.8 m
Explanation:
This is a simple harmonic movement exercise, at the bottom of the swing the acceleration is vertical upwards and the speed is tangential to the trajectory, that is horizontal; the expression for the centralized acceleration is
= v² / R
R = v² /a_{c}
where the radius is equal to the length of the swing
let's calculate
R = 8.1 / 4.5
R = 1.8 m