Answer:
0.37 m
Explanation:
The angular frequency, ω, of a loaded spring is related to the period, T, by

The maximum velocity of the oscillation occurs at the equilibrium point and is given by

A is the amplitude or maximum displacement from the equilibrium.

From the the question, T = 0.58 and A = 25 cm = 0.25 m. Taking π as 3.142,

To determine the height we reached, we consider the beginning of the vertical motion as the equilibrium point with velocity, v. Since it is against gravity, acceleration of gravity is negative. At maximum height, the final velocity is 0 m/s. We use the equation

is the final velocity,
is the initial velocity (same as v above), a is acceleration of gravity and h is the height.


Answer:
1 / 2 m v^2 = L m g (1 - cos θ)
This is the KE due to the pendulum falling from a 25 deg displacement
v^2 = 2 L g (1 - cos 25) = 2 * 2 * 9.8 (1 - .906) = 3.67 m^2/s^2
v = 1.92 m/s this is the speed due to an initial displacement of 25 deg
Its speed at the bottom would then be
1.92 + 1.2 = 3.12 m/s since it gains 1.92 m/s from its initial displacement
Answer:
The index of refraction of the liquid is n = 1.33 equivalent to that of water
Explanation:
Solution:-
- The index of refraction of light in a medium ( n ) determines the degree of "bending" of light in that medium.
- The index of refraction is material property and proportional to density of the material.
- The denser the material the slower the light will move through associated with considerable diffraction angles.
- The lighter the material the faster the light pass through the material without being diffracted as much.
- So, in the other words index of refraction can be expressed as how fast or slow light passes through a medium.
- The reference of comparison of how fast or slow the light is the value of c = 3.0*10^8 m/s i.e speed of light in vacuum or also assumed to be the case for air.
- so we can mathematically express the index of refraction as a ratio of light speed in the material specified and speed of light.
- The light passes through a liquid with speed v = 2.25*10^8 m/s :

- The index of refraction of the liquid is n = 1.33 equivalent to that of water.
The prefix "mega" means million.
Therefore
1 megameter = 10⁶ meters
That is,
1.0 megameter = 1,000,000.0 meters.
Answer:
The decimal is moved right by 6 places to convert a megameter to meters.
Transmission electron microscope