Answer:
As a result, if the field lines are close together (that is, the field line density is greater), this indicates that the magnitude of the field is large at that point. If the field lines are far apart at the cross-section, this indicates the magnitude of the field is small. (Figure) shows the idea.
Explanation:
Answer:
The current will be the same across each bulb.
Answer:
44.85C
Explanation:
Let the specific heat of glass thermometer be 0.84 J/g°C
Let the specific heat of water be 4.186 j/g °C
Let the water density be 1kg/L
136 mL of water = 0.136L of water = 0.136 kg of water = 136 g of water
Since the change of temperature on the glass thermometer is 43.6 - 22 = 21.6 C. We can then calculate the heat energy absorbed to it:

Assume no energy is lost to outside, by the law of energy conservation, this heat energy would come from water




For this problem to be solved, we make use of the de Broglie formula which is written below as follows:
λ = h/mv
where h is 6.626×10⁻³⁴ J·s
9.74 × 10⁻³⁵ m = 6.626×10⁻³⁴ J·s/ (m)(46.9 m/s)
Solving for m,
<em>m = 0.145kg</em>
Answer:
B
Explanation:
Because it has to increase