Answer:
a sound wave is an electromagnetic wave
Answer:
λ = c / f or f = c / λ
f = 3.0E8 / 4.0E-7 = .75E15 / sec = 7.5E14 / sec = 7.5 X 10^14 /sec
Answer:
0.0072 m³/s
Explanation:
Using Bernoulli's law
P₁ + 1/2ρv₁² = P₂ + 1/2ρv₂ since the pipe is horizontal
1/2ρv₂² - 1/2ρv₁² = P₁ - P₂
flow rate is constant
A₁v₁ = A₂v₂
A₁ = πr₁² = π (0.06/2)² = 0.0028278 m²
A₂ = πr₂² = π (0.0225)² = 0.00159 m²
v₁ = (A₂ / A₁)v₂
v₁ = (0.00159 m²/ 0.0028278 m²) v₂ = 0.562 v₂
substitute v₁ into the Bernoulli's equation
1/2ρv₂² - 1/2ρv₁² = P₁ - P₂
500 ( 1 - 0.3161 ) v₂² = (31.0 - 24 ) × 10³ Pa
341.924 v₂² = 7000
v₂² = 20.472
v₂ = √ 20.472 = 4.525 m/s
volume follow rate = 0.00159 m² × 4.525 m/s = 0.0072 m³/s
Explanation:
It is given that,
The period of the carrier wave, T = 0.01 s
Let f and
are frequency and the wavelength of the wave respectively. The relationship between the time period and the frequency is given by :


f = 100 Hz
The wavelength of a wave is given by :



So, the frequency and wavelength of the carrier wave are 100 Hz and
respectively. Hence, the correct option is (c).
A. Using a combination lens made up of lenses, each of which has a different index of refraction. Is the correct answer.