Answer:
Analysis
Explanation:
Because you must Analysis each and every cold too find out which virus caused this.
It’s weird because Interpretation and Analysis have the meaning of examination
<span>31.3 m/s
Since the water balloon is being launched at a 45 degree angle, the horizontal and vertical speeds will be identical. Also the time the balloon takes to reach its peak altitude will match the time it takes to fall. So let's create a few expressions about what we know.
Distance the water balloon travels at velocity v for time t
d = vt
Total time required for the entire trip is double since the balloon goes up, then goes down
t = 2v/a
Now let's plug in the numbers we have, assuming the acceleration due to gravity is 9.8 m/s^2
t = 2v/9.8
100 = vt
Substitute 2v/9.8 for t in the 2nd formula
100 = v(2v/9.8)
Solve for v.
100 = v(2v/9.8)
100 = 2v^2/9.8
980. = 2v^2
490 = v^2
22.13594 = v
So we now know that both the horizontal velocity and vertical velocity needed is 22.13594 m/s. Let's verify that
2*22.13594 / 9.8 = 4.51754
So it will take 4.51754 second for the balloon to hit the ground after being launched.
4.51754 * 22.13594 = 100
And during that time it will travel 100 meters horizontally.
But we need to know the total velocity. And the Pythagorean theorem comes to the rescue. Just square the 2 velocities, add them together, and take the square root. We already know the square is 490 from the work above, so
sqrt(490+490) = sqrt(980) = 31.30495 m/s</span>
Answer:
Work done = (1/2)[(Gmm_e)/(R_e)]
Explanation:
I've attached the explanations below.
A) d. 10T
When a charged particle moves at right angle to a uniform magnetic field, it experiences a force whose magnitude os given by

where q is the charge of the particle, v is the velocity, B is the strength of the magnetic field.
This force acts as a centripetal force, keeping the particle in a circular motion - so we can write

which can be rewritten as

The velocity can be rewritten as the ratio between the lenght of the circumference and the period of revolution (T):

So, we get:

We see that this the period of revolution is directly proportional to the mass of the particle: therefore, if the second particle is 10 times as massive, then its period will be 10 times longer.
B) 
The frequency of revolution of a particle in uniform circular motion is

where
f is the frequency
T is the period
We see that the frequency is inversely proportional to the period. Therefore, if the period of the more massive particle is 10 times that of the smaller particle:
T' = 10 T
Then its frequency of revolution will be:

Answer:
C). Take your foot off the gas pedal. Then brake lightly until you are moving at low speed.
Explanation:
While driving on roads of rural areas, if our right wheel moves off the pavement, we should always hold the steering wheel firmly and then take our foot off the gas pedal, then apply brake lightly until we are moving at a low speed.
When our wheels drift off the pavement area, we should not panic and yank. And instead of turning the wheel back in the left direction towards the road, it is always safer to take off our foot from the gas pedal and then apply brakes slowly. When our vehicle slows down check the incoming traffic behind us and then we should slowly move back on to the pavement.