Answer:
Looks like a cosine function graph. The wave pattern is transversal waves . The faster the amplitude the higher the wave. The force of the drop hitting the water pushes the water down and out causing waves If the water hits from a higher amplitude the waves raise bigger . When you increase the frequency of the water drops the waves move faster but no bigger. When you increase the frequency of the water drops the wave ripples faster .
Explanation:
The projectile has a height <em>h</em> at time <em>t</em> given by
<em>h</em> = (14.0 m/s) <em>t</em> - 1/2 <em>g t</em> ²
where <em>g</em> = 9.80 m/s² is the magnitude of the acceleration due to gravity. Solve for <em>t</em> when <em>h</em> = 0 :
0 = (14.0 m/s) <em>t</em> - 1/2 <em>g t</em> ²
0 = 1/2 <em>t</em> (28.0 m/s - <em>g t</em> )
1/2 <em>t</em> = 0 <u>or</u> 28.0 m/s - <em>g</em> <em>t</em> = 0
The first equation says <em>t</em> = 0, which refers to the moment the gun is first fired, so we ignore that solution. We're left with
28.0 m/s - <em>g t</em> = 0
<em>t</em> = (28.0 m/s) / <em>g</em>
<em>t</em> = (28.0 m/s) / (9.80 m/s²)
<em>t</em> ≈ 2.86 s
The law of reflection states that the angle of incidence is equal to the angle of reflection. Furthermore, the law of reflection states that the incident ray, the reflected ray and the normal all lie in the same plane.
hope this helps :)