Answer:
speed =wavelenght x frequency
v=4.5 x 10 to the -7 x 667=0.3 x 10 to the -4 m/s
speed= distance/time
time=distance/speed
t=4 x 10 to the 16/0.3 x 10 to the -4=13.33 x 10 to the 20 seconds
Explanation:
Answer:
El mango llega al suelo a una velocidad de 329.982 metros por segundo.
Explanation:
El mango experimenta un movimiento de caída libre, es decir, un movimiento uniformemente acelerado debido a la gravedad terrestre, despreciando los efectos de la viscosidad del aire y la rotación planetaria. Entonces, la velocidad final del mango, es decir, la velocidad con la que llega al suelo, se puede determinar mediante la siguiente fórmula cinemática:
(1)
Donde:
- Velocidad inicial, en metros por segundo.
- Velocidad final, en metros por segundo.
- Aceleración gravitacional, en metros por segundo al cuadrado.
- Tiempo, en segundos.
Si sabemos que
,
y
, entonces la velocidad final del mango es:



El mango llega al suelo a una velocidad de 329.982 metros por segundo.
The pressure of the air inside the balloon is higher than outside, and when you pop the balloon, the high pressure air expands quickly and makes a popping sound.
Answer:
All of them are false
Explanation:
4. electrons flow from earth to the object
5. electrons move freely
6. protons can't move
Answer:
vf = 22.36[m/s]
Explanation:
First we must understand the data given in the problem:
m = mass = 800 [kg]
F = force = 20000[N]
dx = displacement = 10[m]
From newton's second we know that the sum of forces must be equal to the product of mass by acceleration.
![F = m*a\\20000 = 800*a\\a = 20000/800\\a = 25 [m/s^2]](https://tex.z-dn.net/?f=F%20%3D%20m%2Aa%5C%5C20000%20%3D%20800%2Aa%5C%5Ca%20%3D%2020000%2F800%5C%5Ca%20%3D%2025%20%5Bm%2Fs%5E2%5D)
With the calculated acceleration, we can use the kinematics equations.
![v_{f} ^{2} =v_{o} ^{2}+2*a*dx\\ v_{o} = initial velocity = 0\\a = acceleration = 25[m/s^2]\\dx= displacement = 10[m]\\](https://tex.z-dn.net/?f=v_%7Bf%7D%20%5E%7B2%7D%20%3Dv_%7Bo%7D%20%5E%7B2%7D%2B2%2Aa%2Adx%5C%5C%20v_%7Bo%7D%20%3D%20initial%20velocity%20%3D%200%5C%5Ca%20%3D%20acceleration%20%3D%2025%5Bm%2Fs%5E2%5D%5C%5Cdx%3D%20displacement%20%3D%2010%5Bm%5D%5C%5C)
The key to using this equation is to clarify that the initial velocity is zero since the body is at rest, otherwise the initial velocity would be an initial data.
![v_{f} =\sqrt{2*25*10} \\v_{f} =22.36[m/s]](https://tex.z-dn.net/?f=v_%7Bf%7D%20%3D%5Csqrt%7B2%2A25%2A10%7D%20%5C%5Cv_%7Bf%7D%20%3D22.36%5Bm%2Fs%5D)
Another way of solving this problem is by means of the definition of work and kinetic energy, where work is defined as the product of the force by the distance.
W =F*d
W = 20000*10
W = 200000[J]
Kinetic energy is equal to work, therefore the value calculated above is equal to:
![E_{k}=W =0.5*m*v_{f}^{2} \\200000=0.5*800*v_{f}^{2}\\v_{f}=\sqrt{\frac{200000}{0.5*800} } \\v_{f}=22.36[m/s]](https://tex.z-dn.net/?f=E_%7Bk%7D%3DW%20%3D0.5%2Am%2Av_%7Bf%7D%5E%7B2%7D%20%5C%5C200000%3D0.5%2A800%2Av_%7Bf%7D%5E%7B2%7D%5C%5Cv_%7Bf%7D%3D%5Csqrt%7B%5Cfrac%7B200000%7D%7B0.5%2A800%7D%20%7D%20%5C%5Cv_%7Bf%7D%3D22.36%5Bm%2Fs%5D)