Answer:
the total force vector, on test charge is points from origin to point C( 1, 1 )
Explanation:
Given the data in the question, as illustrated in the image below;
from the Image, OA = 1, OB = AC = 1
so using Pythagoras theorem
a² = b² + c²
a = √( b² + c² )
so
OC = √( OB² + AC² )
we substitute
OC = √( OA² + AC² )
OC = √( 1² + 1² )
OC = √( 1 + 1 )
OC = √2
Coordinate of C( 1, 1 )
Hence, the total force vector, on test charge is points from origin to point C( 1, 1 )
Answer:
35870474.30504 m
Explanation:
r = Distance from the surface
T = Time period = 24 h
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
m = Mass of the Earth = 5.98 × 10²⁴ kg
Radius of Earth = 
The gravitational force will balance the centripetal force


From Kepler's law we have relation

Distance from the center of the Earth would be

The question is incomplete, the complete question is;
The compound magnesium phosphate has the chemical formula Mg3(PO4)2. In this compound, phosphorus and oxygen act together as one charged particle, which is connected to magnesium, the other charged particle. What does the 2 mean in the formula 5Mg3(PO4)2? A. There are two elements in magnesium phosphate. B. There are two molecules of magnesium phosphate. C. There are two magnesium ions in a molecule of magnesium phosphate. D. There are two phosphate ions in a molecule of magnesium phosphate.
Answer:
There are two phosphate ions in a molecule of magnesium phosphate.
Explanation:
The compound magnesium phosphate is an ionic compound. Ionic compounds always consists of two ions, a positive ion and a negative ion.
In this case, the positive ion is Mg^2+ while the negative ion is PO4^3-.
The subscript, 2 after the formula of the phosphate ion means that there are two phosphate ions in each formula unit of magnesium phosphate.
Complete Question:
Find the resistance of a wire of length 0.65 m, radius 0.25 mm and resistivity 3 * 10^{-6} ohm-metre.
Answer:
Resistance = 9.95 Ohms
Explanation:
<u>Given the following data;</u>
Length = 0.65 m
Radius = 0.25 mm to meters = 0.00025 m
Resistivity = 3 * 10^{-6} ohm-metre.
To find the resistance of the wire;
Mathematically, resistance is given by the formula;

Where;
- P is the resistivity of the material.
- L is the length of the material.
- A is the cross-sectional area of the material.
First of all, we would find the cross-sectional area of the wire.
Area of circle = πr²
Substituting into the equation, we have;
Area = 3.142 * (0.00025)²
Area = 3.142 * 6.25 * 10^{-8}
Area = 1.96 * 10^{-7} m²
Now, to find the resistance of the wire;


<em>Resistance = 9.95 Ohms </em>