Answer:
115.2 °C since melting point is an intensive property
Step-by-step explanation:
The melting point of a substance does not depend on how much you have.
For example, the melting point of water is 0 °C, whether it is an ice cube from the refrigerator or in the frozen pond outside.
The freezing point of a substance is an <em>intensive property</em>.
Thus, the melting point of 100 g of sulfur is 115.2 °C because melting point in an intensive property.
This is true. Water is the solvent in aqueous solutions
<span>The following is the role of NaCl and EDTA in DNA isolation, hope it helps:
NaCl provides Na+ ions that will block negative charge from phosphates on DNA.
Negatively charged phosphates on DNA cause molecules to repel each other. The Na+ ions will form an ionic bond with the negatively charged phosphates on the DNA, neutralizing the negative charges and allowing the DNA molecules to come together.</span>
Answer:
4.6 × 10²³ molecules:
Step-by-step solution
You will need a balanced equation with masses, moles, and molar masses, so let's gather the information in one place:
M_r: 22.99
2Na + 2H₂O ⟶ 2NaOH + H₂
m/g: 35
1. Calculate the <em>moles of Na
</em>
Moles of Na = 35 g Na × (1 mol Na/22.99 g Na)
Moles of Na = 1.52 mol Na
2. Calculate the <em>moles of H₂
</em>
Moles of H₂ = 1.52 mol Na × (1 mol H₂/2 mol Na)
Moles of H₂= 0.761 mol H₂
3. Calculate the molecules of H₂
6.022 × 10²³ molecules H₂ = 1 mol H₂
Molecules of H₂ = 0.761 × (6.022 × 10²³
/1)
Molecules of H₂ = 4.6 × 10²³ molecules H₂
The reaction forms 4.6 × 10²³ molecules of H₂.