Answer:
The nichrome wire is dirty.
The solution is contaminated.
Explanation:
If the nichrome wire is dirty, it may contain sodium contaminants which may be responsible for the yellow flame. The nichrome wire is first inserted into the flame without the sample to check for impurities.
The test solution may also have been contaminated. This leads to the appearance of a colour different from the expected colour of the test cation in the solution.
Answer: In creating a covalent bond, it would be best to bind oxygen to carbon (C ).
Covalent bonds result from electron-sharing between two atoms. One carbon atom combines with two oxygen atoms. Thus, the carbon dioxide molecule has two C=O bonds. Carbon dioxide is a very common covalent bond.
Answer:
<h3>The answer is 82.86 cm³</h3>
Explanation:
The volume of a substance when given the density and mass can be found by using the formula

From the question
mass of wood = 44 g
density = 0.531 g/cm³
It's volume is

We have the final answer as
<h3>82.86 cm³</h3>
Hope this helps you
This problem is asking for an explanation of what happens when an ionic bond is formed. Although the choices are not given in the question, one can find them on the attached file and realize the answer is C "a less electronegative atom donates an electron to a more electronegative atom" according to:
<h3>Types of bonds:</h3><h3 />
In chemistry, the forces that hold atoms together are known as chemical bonds and act like connections for atoms to form compounds. There exist ionic and covalent bonds, so the formers occur when electrons are thoroughly donated from the least electronegative atom to the most electronegative one.
On the flip side, covalent bonds occur when the electrons are shared between the two or more of the atoms forming the compound. In such a way, one can discard choices A and B because they are more related to covalent bonds.
Therefore, one can select C "a less electronegative atom donates an electron to a more electronegative atom" as the correct answer, because not all the elements are able to donate more than one single electron, and the less its valency, the more ionic the compound turns out to be.
Learn more about types of bonds: brainly.com/question/792566
Answer:
10.88 g
Explanation:
We have:
[CH₃COOH] = 0.10 M
pH = 5.25
Ka = 1.80x10⁻⁵
V = 250.0 mL = 0.250 L
The pH of the buffer solution is:
(1)
By solving equation (1) for [CH₃COONa*3H₂O] we have:
![[CH_{3}COONa*3H_{2}O] = 10^{-0.495} = 0.32 M](https://tex.z-dn.net/?f=%5BCH_%7B3%7DCOONa%2A3H_%7B2%7DO%5D%20%3D%2010%5E%7B-0.495%7D%20%3D%200.32%20M)
Hence, the mass of the sodium acetate tri-hydrate is:
![m = moles*M = [CH_{3}COONa*3H_{2}O]*V*M = 0.32 mol/L*0.250 L*136 g/mol = 10.88 g](https://tex.z-dn.net/?f=m%20%3D%20moles%2AM%20%3D%20%5BCH_%7B3%7DCOONa%2A3H_%7B2%7DO%5D%2AV%2AM%20%3D%200.32%20mol%2FL%2A0.250%20L%2A136%20g%2Fmol%20%3D%2010.88%20g)
Therefore, the number of grams of CH₃COONa*3H₂O needed to make an acetic acid/sodium acetate tri-hydrate buffer solution is 10.88 g.
I hope it helps you!