Answer:
⇒ We have Na2O + H2O --> NaOH. We have 2 sodiums and 2 oxygens and 2 hydrogens on the left side, but only one of each on the right side.
Sodium Oxide + Water → Sodium Hydroxide
⇒ Na2O + H2O → 2NaOH .
Sodium oxide is used in ceramics and glasses. Sodium oxide reacts exothermically with cold water to produce sodium hydroxide solution.
Answer:
A. there is an isotope of lanthanum with an atomic mass of 138.9
Explanation:
By knowing the different atomic masses of both Lanthanum atoms, we can not tell anything about their occurence in nature. Therefore, all the last three options are incorrect. Because, the atomic mass does not tell anything about the availability or natural abundance of an element.
Now, the isotopes of an element are those elements, which have same number of electrons and protons as the original element, but different number of neutrons. Therefore, they have same atomic number but, different atomic weight or atomic masses.
Hence, by looking at an elements having same atomic number, but different atomic masses, we can identify them as isotopes.
Thus, the correct option is:
<u>A. there is an isotope of lanthanum with an atomic mass of 138.9.</u>
Answer:
B. Ca2+ import into the ER because it has the steeper concentration gradient
Explanation:
ΔGt = RT㏑(C₂/C₁)
where ΔGt is the free energy change for transport; R = 8.315 J/mol; T = 298 K; C₂/C₁ is ratio of concentrations inside and outside each organelle.
For Ca²⁺ import
ΔGt = 8.315 J/mol * 298 K * ㏑(10⁻³/10⁻⁷)
ΔGt= 3.42 kJ/mol
For H⁺ import
ΔGt = 8.315 J/mol * 298 K * ㏑ (10⁻⁴/10⁻⁷)
ΔGt = 2.73 kJ/mol
From the above values, ΔGt is greater for Ca²⁺ import because it has a steeper concentration gradient
For ionic bond
The metal atom will lose electrons to form cations and the non metal atom will gain electron.egNaCl