Answer:
F i think i pretty sure F!!!!!!!!
To solve this we use the
equation,
<span> M1V1 = M2V2</span>
<span> where M1 is the
concentration of the stock solution, V1 is the volume of the stock solution, M2
is the concentration of the new solution and V2 is its volume.</span>
<span>2.0 M x V1 = 0.50 M x 200 mL</span>
<span>V1 = 50 mL needed</span>
Knowing the ratio between atoms we can write an empirical formula:
<span>C4H6O </span>
<span>we compute the molar mass of this single formula: </span>
<span>4x12 + 6 x 1 + 16 x1 = 70 g / mol </span>
<span>Now, as we know the actual molar mas being 280 g/mol, we divide this number by 70 and we get the ratio between empirical formula and molecular actual formula: </span>
<span>280 / 70 = 4 </span>
<span>This means that actual molecular formula is: </span>
<span>(C4H6O)4 or </span>
<span>C16H24O4 </span>
The correct answer is the first choice given. Plants and algaes are producers. They are called as such since they produce their own food by using the energy from the sun, CO2 and water to form glucose as their food.