The fifth shell can hold up to 50 electrons and the forth shell can hold 8 electrons
Answer:
kf = 1.16 x 10¹⁸
Explanation:
Step 1: [Ni(H₂O)₆]²⁺ + 1en → [Ni(H₂O)₄(en)]²⁺ ΔG°1 = -42.9 kJmol⁻¹
Step 2: [Ni(H₂O)₄(en)]²⁺ + 1en → [Ni(H₂O)₂(en)₂]²⁺ ΔG°2 = -35.8 kJmol⁻¹
Step 3: [Ni(H₂O)₂(en)₂]²⁺ + 1en → [Ni(en)₃]²⁺ ΔG°3 = -24.3 kJmol⁻¹
________________________________________________________
Overall reaction: [Ni(H₂O)₆]²⁺ + 3en → [Ni(en)₃]²⁺ ΔG°r
ΔG°r = ΔG°1 + ΔG°2 + ΔG°3
ΔG°r = -42.9 - 35.8 - 24.3
ΔG°r = -103.0 kJmol⁻¹
ΔG°r = -RTlnKf
-103,000 Jmol⁻¹ = - 8.31 J.K⁻¹mol⁻¹ x 298 K x lnKf
kf = e ^(-103,000/-8.31x298)
kf = e ^41.59
kf = 1.16 x 10¹⁸
It forms something called a bond.
Its Homogenous Centrifuges are used to speed up the process of separating Homogeneous mixtures.
Answer:
- The answer is the concentration of an NaOH = 1.6 M
Explanation:
The most common way to solve this kind of problem is to use the formula
In your problem,
For NaOH
C₁ =?? v₁= 78.0 mL = 0.078 L
For H₂SO₄
C₁ =1.25 M v₁= 50.0 mL = 0.05 L
but you must note that for the reaction of NaOH with H₂SO₄
2 mol of NaOH raect with 1 mol H₂SO₄
So, by applying in above formula
- (C₁ * 0.078 L) = (2* 1.25 M * 0.05 L)
- C₁ = (2* 1.25 M * 0.05 L) / (0.078 L) = 1.6 M
<u>So, the answer is the concentration of an NaOH = 1.6 M</u>