Answer:
(a) The final angular speed is 12.05 rad/s
(b) The time taken to turn 5.5 revolutions is 5.74 s
Explanation:
Given;
number of revolutions, θ = 5.5 revolutions
acceleration of the wheel, α = 20 rpm/s
number of revolutions in radian is given as;
θ = 5.5 x 2π = 34.562 rad
angular acceleration in rad/s² is given as;

(a)
The final angular speed is given as;

(b) the time taken to turn 5.5 revolutions is given as

Answer:
Explanation:
Orbital radius of satellite A , Ra = 6370 + 6370 = 12740 km
Orbital radius of satellite B , Rb = 6370 + 19110 = 25480 km
Orbital potential energy of a satellite = - GMm / r where G is gravitational constant , M is mass of the earth and m is mass of the satellite
Orbital potential energy of a satellite A = - GMm / Ra
Orbital potential energy of a satellite B = - GMm / Rb
PE of satellite B /PE of satellite A
= Ra / Rb
= 12740 / 25480
= 1 / 2
b ) Kinetic energy of a satellite is half the potential energy with positive value , so ratio of their kinetic energy will also be same
KE of satellite B /KE of satellite A
= 1 / 2
c ) Total energy will be as follows
Total energy = - PE + KE
- P E + PE/2
= - PE /2
Total energy of satellite B / Total energy of A
= 1 / 2
Satellite B will have greater total energy because its negative value is less.
Answer:
the claim is not valid or reasonable.
Explanation:
In order to test the claim we will find the maximum and actual efficiencies. maximum efficiency of a heat engine can be found as:
η(max) = 1 - T₁/T₂
where,
η(max) = maximum efficiency = ?
T₁ = Sink Temperature = 300 K
T₂ = Source Temperature = 400 K
Therefore,
η(max) = 1 - 300 K/400 K
η(max) = 0.25 = 25%
Now, we calculate the actual frequency of the engine:
η = W/Q
where,
W = Net Work = 250 KJ
Q = Heat Received = 750 KJ
Therefore,
η = 250 KJ/750 KJ
η = 0.333 = 33.3 %
η > η(max)
The actual efficiency of a heat engine can never be greater than its Carnot efficiency or the maximum efficiency.
<u>Therefore, the claim is not valid or reasonable.</u>