First we need to calculate the number of moles of FeS
:
number of moles = mass (grams) / molecular mass (g/mol)
number of moles of FeS
= 198.2/120 = 1.65 moles
From the chemical reaction we deduce that:
if 4 moles of FeS
produces 8 moles of SO
then 1.65 moles of FeS
produces X moles of SO
X = (1.65×8)/4 = 3.3 moles of SO
Now we can calculate the mass of SO
:
mass (grams) = number of moles × molecular mass (grams/mole)
mass of SO
= 3.3×64 = 211.2 g
Aluminum can be oxidized by
and 
<h3>What is oxidizing?</h3>
Some of the metal corrodes (or oxidizes) and forms the corresponding metal oxide on the surface as a result of a chemical reaction between the metal surface and the oxygen in the air. The corrosion products that occur in some metals, like steel, are highly apparent and loose.
According to reactivity series (The array of metals in the descending order of their reactivities is referred to as the metals' reactivity series. It is sometimes referred to as the metals in the activity series.)
Lithium and calcium ions are more reactive than aluminum ion and they are less electronegative.
Since silver and tin are more electronegative than aluminum so, they cannot oxidize aluminum.
∴
and
ions can oxidize aluminum.
Learn more about electronegativity here brainly.com/question/16446391
#SPJ10
Answer : HazCom
Explanation : Hazard communication which is also known as HazCom, is a set of processes and procedures that every employers and importers must implement in their workplace to effectively communicate hazards associated with chemicals during handling, shipping, and any form of exposure.
The OSHA Hazard Communication Standard is a U.S. regulation which governs the evaluation and communication of hazards associated with chemicals at the workplace. It is typically not attached to any specific chemical container but is stored in the workplace.
Answer:

Explanation:
Hello,
In this case, for the given reaction, the equilibrium constant turns out:
![Keq=\frac{[B]}{[A]}=\frac{0.5M}{1.5M} =1/3](https://tex.z-dn.net/?f=Keq%3D%5Cfrac%7B%5BB%5D%7D%7B%5BA%5D%7D%3D%5Cfrac%7B0.5M%7D%7B1.5M%7D%20%3D1%2F3)
Nonetheless, we are asked for the reverse equilibrium constant that is:

Which is greater than one.
In such a way, the Gibbs free energy turns out:

Now, since the reverse equilibrium constant is greater than zero its natural logarithm is positive, therefore with the initial minus, the Gibbs free energy is less than zero, that is, negative.
I think it's B
B) increasing the surface area of the reactants.