Answer:
The concentration of the most dilute solution is 0.016M.
Explanation:
First, a solution is prepared and then it undergoes two subsequent dilutions. Let us calculate initial concentration:
![[Na_{2}SO_{4}]=\frac{moles(Na_{2}SO_{4})}{liters(solution)} =\frac{mass((Na_{2}SO_{4}))}{molarmass(moles(Na_{2}SO_{4}) \times 0.100L)} =\frac{2.5316g}{142g/mol\times 0.100L } =0.178M](https://tex.z-dn.net/?f=%5BNa_%7B2%7DSO_%7B4%7D%5D%3D%5Cfrac%7Bmoles%28Na_%7B2%7DSO_%7B4%7D%29%7D%7Bliters%28solution%29%7D%20%3D%5Cfrac%7Bmass%28%28Na_%7B2%7DSO_%7B4%7D%29%29%7D%7Bmolarmass%28moles%28Na_%7B2%7DSO_%7B4%7D%29%20%5Ctimes%200.100L%29%7D%20%3D%5Cfrac%7B2.5316g%7D%7B142g%2Fmol%5Ctimes%200.100L%20%7D%20%3D0.178M)
<u>First dilution</u>
We can use the dilution rule:
C₁ x V₁ = C₂ x V₂
where
Ci are the concentrations
Vi are the volumes
1 and 2 refer to initial and final state, respectively.
In the first dilution,
C₁ = 0.178 M
V₁ = 15 mL
C₂ = unknown
V₂ = 50 mL
Then,

<u>Second dilution</u>
C₁ = 0.053 M
V₁ = 15 mL
C₂ = unknown
V₂ = 50 mL
Then,

Answer:
I think its ethanol based on what I've learned
Answer:
Destiny = 5 g/ml
Explanation:
The formula for density is d=
Knowing this, divide your mass by volume:
10 g / 2 ml = 5 g/ml
Final answer:
Destiny = 5 g/ml
Salt is usually formed during neutralization reactions,
that is the reaction of an acid and a base. This is illustrated as follows:
<span>HX + YOH --> XY
+ H2O</span>
where XY is the salt
From the given choices, the only pair of acid and base is:
<span>Vinegar and antacids</span>