Hello
1) First of all, since we know the radius of the wire (

), we can calculate its cross-sectional area

2) Then, we can calculate the current density J inside the wire. Since we know the current,

, and the area calculated at the previous step, we have

3) Finally, we can calculate the electric field E applied to the wire. Given the conductivity

of the aluminium, the electric field is given by
It is known as silicon dioxide or silica!
Hope this helps!
The relative velocity of the athlete relative to the ground is 5.2 m/s
The given parameters;
constant velocity of the athlete, V = 5.2 m/s
let the velocity of the ground = Vg = 0
The relative velocity concept helps us to determine the velocity of a moving object relative to a stationary observer.
The athlete is the moving object in this question while the ground is stationary.
The relative velocity of the athlete relative to the ground is calculated as follows;

Thus, the relative velocity of the athlete relative to the ground is 5.2 m/s
Learn more here: brainly.com/question/24430414
Answer: 1.348 meters
Explanation: Although the sign is missing from the location of the 4.00 kg object, it is assumed to be positive. The net moment of all the objects about the center of mass must be zero. Let the center of mass be on the y axis at a point c . Adding the four moments together, we get:
(2.00)(3.00−c)+(3.00)(2.50−c)+(2.50)(0−c)+(4.00)(0.500−c)=0
6.00−2.00c+7.50−3.00c+0−2.50c+2.00−4.00c=0
11.5c=15.50
c= 1.348 metres
The center of mass is on the y axis at y = 1.348 metres.