The history of balloon flight dates to 1783, when two French brothers, Joseph and Etienne Montgolfier, discovered that filling a bag with hot air would cause it to rise. They demonstrated their principle at Annonay, France, on June 4, 1783, with an unmanned balloon made of linen and pape
Explanation:
We have to find the number of molecules that are present in 0.54 g of Ca(NO₃)₂.
First we have to convert the mass of our sample into moles of Ca(NO₃)₂. We will use the molar mass of Ca(NO₃)₂ to do that.
molar mass of Ca = 40.08 g/mol
molar mass of N = 14.01 g/mol
molar mass of O = 16.00 g/mol
molar mass of Ca(NO₃)₂ = 1 * 40.08 g/mol + 2 * 14.01 g/mol + 6 * 16.00 g/mol
molar mass of Ca(NO₃)₂ = 164.10 g/mol
mass of Ca(NO₃)₂ = 0.54 g
moles of Ca(NO₃)₂ = 0.54 g * 1 mol/(164.10 g)
moles of Ca(NO₃)₂ = 0.00329 moles
According to Avogadro's number there are 6.022 *10^23 molecules in 1 mol of molecules. We can use that relationship to find the number of molecules that are present in our sample.
6.022 *10^23 molecules = 1 mol
molecules of Ca(NO₃)₂ = 0.00329 moles * 6.022 *10^23 molecules/(1 mol)
molecules of Ca(NO₃)₂ = 2.0 * 10^21 molecules
Answer: there are 2.0 * 10^21 molecules of Ca(NO₃)₂ in 0.54 g of it.
Answer:
Decreasing order is as follows:
γ-rays > x-rays > red light > infrared > radio
Explanation:
Energy and wavelength are inversely related with each other.
In other words, energy decreases as the wavelength of electromagnetic radiation increases.
Order of wavelength for the given radiations are as follows:
Radio > infrared > red light > x-rays > γ-rays
So, order of the energy will be reverse.
γ-rays > x-rays > red light > infrared > radio
Answer: 316.8 g CrSO3
Explanation: Solution:
2.4 moles CrSO3 x 132 g CrSO3 / 1 mole CrSO3 = 316.8 g CrSO4
The conversion factor is 1 mole of CrSO4 is equal to its molar mass which is 132 g CrSO3