Answer:
CO2
Explanation:
All of the other options are elements found on the periodic table but Carbon Dioxide are two elements.
Answer:
530.835 g
Explanation:
First we convert 244 g of benzoic acid (C₇H₆O₂) to moles, using its molar mass:
- 244 g benzoic acid ÷ 122.12 g/mol = 2.00 moles benzoic acid
Theoretically,<em> one mol of ethyl benzene would produce one mol of benzoic acid</em>. But the experimental yield tells us that one mol of ethyl benzene will produce only 0.4 moles of benzoic acid.
With the above information in mind we convert 2.00 moles of benzoic acid into moles of ethyl benzene:
- 2.00 moles benzoic acid *
= 5.00 moles ethyl benzene
Finally we <u>convert moles of ethyl benzene </u>(C₈H₁₀)<u> into grams</u>, using its <em>molar mass</em>:
- 5.00 moles ethyl benzene * 106.167 g/mol = 530.835 g ethyl benzene
A. HCl:
pH= -log [H3O+]
PH=-log (0.200)
= 0.699
poH= 14-0.699
= 13.301
b. NaOH:
PoH= -log [OH-]
= -log (0.0143)
= 1.845
pH= 14-poH
= 14- 1.845
= 12.16
c. HNO3:
PH= -log[H3O+]
=-log(3.0)
= -0.4771
poH= 14-pH
= 14-9-0.4771
= 14.4771
pH= -0.4771, poH= 14.4771
d. [Ca(OH)2] = 0.0031M
[OH-]= 2X0.0031
[OH-] = 0.0062M
PoH= - log[OH-]
=-log(0.0062)
=-log(6.2x10-3)
=-(-2.21)
= 2.21
PH=14-poH
=14-2.21
=11.79
POH=2.21, PH= 11.79
Answer:

Explanation:
Hello,
The six-carbon benzene ring contains two types of bonds: C-C and C-H bonds, that are
-hybridized σ bonds, and the six π bonds that form the aromatic ring. The σ bonds form from one
orbital and two
orbitals from each carbon, which then bond the carbon to the two carbons on either side and the carbon's single hydrogen. The remaining
orbital from each carbon atom sticks out above and below the plane of the ring; these
orbitals overlap sideways, rather than lengthwise, to form the aromatic π bond system.
Best regards.
<span>37.9968064 ± 0.0000010 g/mol</span>