The sample of argon gas that has the same number of atoms as a 100 milliliter sample of helium gas at 1.0 atm and 300 is 100. mL at 1.0 atm and 300. K
The correct option is D.
<h3>What is the number of moles of gases in the given samples?</h3>
The number of moles of gases in each of the given samples of gas is found below using the ideal gas equation.
The ideal gas equation is: PV/RT = n
where;
- P is pressure
- V is volume
- n is number of moles of gas
- T is temperature of gas
- R is molar gas constant = 0.082 atm.L/mol/K
Moles of gas in the given helium gas sample:
P = 1.0 atm, V = 100 mL or 0.1 L, T = 300 K
n = 1 * 0.1 / 0.082 * 300
n = 0.00406 moles
For the argon gas sample:
A. n = 1 * 0.05 / 0.082 * 300
n = 0.00203 moles
B. n = 0.5 * 0.05 / 0.082 * 300
n = 0.00102 moles
C. n = 0.5 * 0.1 / 0.082 * 300
n = 0.00203 moles
D. n = 1 * 0.1 / 0.082 * 300
n = 0.00406 moles
Learn more about ideal gas equation at: brainly.com/question/24236411
#SPJ1
Ne is isoelectronic with Na+ ion.
Answer:
Iconic bond or covalent bond
Explanation:
If the hydronium concentration decreases, the pH increases, resulting in a solution that is less acidic and more basic
Answer:
1) 1.235 g.
2) 0.61 g.
Explanation:
- From the balanced equation:
<em>Al(OH)₃ + 3HCl → AlCl₃ + 3H₂O.</em>
1.0 mol of Al(OH)₃ reacts with 3.0 moles of HCl to produce 1.0 mol of AlCl₃ and 3.0 moles of H₂O.
<em>1) How many grams of HCl can a tablet with 0.880 g of Al(OH)₃ consume? </em>
- To calculate the amount of HCl needed to consume 0.880 g of Al(OH)₃, we need to calculate the no. of moles of Al(OH)₃:
no. of moles of Al(OH)₃ = mass/molar mass = (0.880 g)/(78.0 g/mol) = 1.13 x 10⁻² mol.
∵ Every 1.0 mol of Al(OH)₃ needs 3.0 moles of HCl to be consumed.
∴ 1.13 x 10⁻² mol of Al(OH)₃ needs (3 x 1.13 x 10⁻² = 3.385 x 10⁻² mol) of HCl.
The no. of grams of HCl = no. of moles of HCl x molar mass of HCl = (3.385 x 10⁻² mol)(36.5 g/mol) = 1.235 g.
<em>2) How much H₂O?</em>
∵ Every 1.0 mol of Al(OH)₃ produces 3.0 moles of H₂O.
∴ 1.13 x 10⁻² mol of Al(OH)₃ produces (3 x 1.13 x 10⁻² = 3.385 x 10⁻² mol) of H₂O.
<em>The no. of grams of H₂O = no. of moles of H₂O x molar mass of H₂O </em>= (3.385 x 10⁻² mol)(18.0 g/mol) = <em>0.6092 g ≅ 0.61 g.</em>