You are trying to convert mass to volume. That ain't working
Answer:
Time taken by A and B is 1.2 hr.
Explanation:
Given that
Time taken by tank when all(A+B+C) are open = 1 hr
Time taken by tank when A+C are open = 1.5 hr
Time taken by tank when B+C are open = 2 hr
If we treat as filling of tank is a work then
Work = time x rate
Lets take work is 1 unit
1 = 1(1/a+1/b+1/c) ---------1
1 = 1.5(1/a+1/c) ----------2
1 = 2(1/b+1/c) --------3
From equation 1 and 3
1=1(1/a+1/2)
a=2
Form equation 2
1 = 1.5(1/2+1/c)
c=6
From equation 3
1 = 2(1/b+1/6)
b=3
So time taken by
A is alone to fill tank is 2 hr
B is alone to fill tank is 3 hr
C is alone to fill tank is 6 hr
So 
Time taken by A and B is 1.2 hr.
Answer:
Explanation:
Given
mass of Flywheel 
mass of bus 
radius of Flywheel 
final speed of bus 
Conserving Energy i.e.
0.9(Rotational Energy of Flywheel)= change in Kinetic Energy of bus
Let
be the angular velocity of Flywheel





Answer:
You are doing this wrong. Make sure that if you have 2 rows and on the top it has pounds then on the second bottom row you also have pounds so that they cancel each other out.
Explanation:
Answer:
3. 0.5 sec.
Explanation:
A bullet fired horizontally follows a projectile motion, which consists of two independent motions:
- A horizontal motion with constant speed
- A vertical motion with constant acceleration, g = 9.8 m/s^2, towards the ground
The time taken for the bullet to reach the ground can be calculated just by considering the vertical motion:

where y is the vertical position at time t, h is the initial height, and
is the initial vertical velocity of the bullet.
Since the bullet is fired horizontally,
. So the equation becomes

And the time that the bullet takes to reach the ground can be found by requiring y=0 and solving for t:

As we can see, in this equation there is no dependance on the initial speed of the bullet: therefore, if the bullet is fired still horizontally but with a different speed, it will still take the same time (0.5 s) to reach the ground.