Answer:
In physics the standard unit of weight is Newton, and the standard unit of mass is the kilogram. On Earth, a 1 kg object weighs 9.8 N, so to find the weight of an object in N simply multiply the mass by 9.8 N. Or, to find the mass in kg, divide the weight by 9.8 N.
Explanation:
<em><u>Radhe</u></em><em><u> </u></em><em><u>Radhe</u></em><em><u>❤</u></em>
Answer:
the energy of the spring at the start is 400 J.
Explanation:
Given;
mass of the box, m = 8.0 kg
final speed of the box, v = 10 m/s
Apply the principle of conservation of energy to determine the energy of the spring at the start;
Final Kinetic energy of the box = initial elastic potential energy of the spring
K.E = Ux
¹/₂mv² = Ux
¹/₂ x 8 x 10² = Ux
400 J = Ux
Therefore, the energy of the spring at the start is 400 J.
Answer:
See below
Explanation:
<u>I will use 3 x 10^8 m/s for speed or wave</u>
speed = wavelength * frequency
3 x 10^8 = w * 7.34 x 10^2 <====== are you sure this isn't KILO Hz ?
w = <u>408719. 3 meters </u>
Gravitational force = G ( m1 m2 ) / r²
3 = G ( m1 m2 ) / ( 10 )²x = G ( m1 m2 ) / ( 5 )²We shall divide those two equations:3 / x = 1/100 / 1/25 = 25 / 100 = 1 / 4x · 1 = 3 · 4x = 12Answer:C. 12 N
Answer:
B) 1.5 m/s
Explanation:
The apparent frequency will be enhanced due to Doppler effect
If f be the apparent frequency , F be the real frequency , V be the velocity of sound and v be the velocity of approaching submarine then f is given by
f = F \frac{V+v}{V-v}\\
\frac{f}{F} =\frac{V+v}{V-v}\\
\frac{f}{F}-1 =\frac{V+v}{V-v}-1\\
\Delta f = \frac{2vf}{V-v}\\
200=\frac{2\times v\times 100\times 1000}{1482-v}\\
v=1.48 m/s