1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
timofeeve [1]
3 years ago
5

If a skydiver weighs 800 N, what would air resistance be when he is at terminal velocity?

Physics
2 answers:
hram777 [196]3 years ago
7 0
Let his weight be mg.

For a falling body in a fluid.

W - V - U = ma.    Where
                             W = Weight = 800N.
                              m = mass
                             V = Viscous Force = Air Resistance.
                             U = upthrust = Negligible for air.
                             a = acceleration
                             g = acceleration due to gravity.
Note also at terminal velocity  a = zero.
 
W - V - 0 = m(0)
800 - V  = 0
800 = V. 

Therefore the viscous force which is equivalent to air resistance is also 800N.
Cheers.
serg [7]3 years ago
5 0
We call "terminal velocity" the constant speed of a falling body
when it is no longer accelerating.

We know that if a body is not accelerating, then the net force
on it is zero.

From the question, we know that the downward force of gravity
on the skydiver is 800 N.

If the 800 N downward plus the air resistance upward add up
to zero, then the air resistance upward must also be 800 N.
You might be interested in
(a) According to Hooke's Law, the force required to hold any spring stretched x meters beyond its natural length is f(x)=kx. Sup
KengaRu [80]

Answer:

a) The work required to stretch the spring from 20 centimeters to 25 centimeters is 0.313 joules, b) The area of the region enclosed by one loop of the curve r(\theta) = 2\cdot \sin 5\theta is 4\pi.

Explanation:

a) The work, measured in joules, is a physical variable represented by the following integral:

W = \int\limits^{x_{f}}_{x_{o}} {F(x)} \, dx

Where

x_{o}, x_{f} - Initial and final position, respectively, measured in meters.

F(x) - Force as a function of position, measured in newtons.

Given that F = k\cdot x and the fact that F = 25\,N when x = 0.3\,m - 0.2\,m, the spring constant (k), measured in newtons per meter, is:

k = \frac{F}{x}

k = \frac{25\,N}{0.3\,m-0.2\,m}

k = 250\,\frac{N}{m}

Now, the work function is obtained:

W = \left(250\,\frac{N}{m} \right)\int\limits^{0.05\,m}_{0\,m} {x} \, dx

W = \frac{1}{2}\cdot \left(250\,\frac{N}{m} \right)\cdot [(0.05\,m)^{2}-(0.00\,m)^{2}]

W = 0.313\,J

The work required to stretch the spring from 20 centimeters to 25 centimeters is 0.313 joules.

b) Let be r(\theta) = 2\cdot \sin 5\theta. The area of the region enclosed by one loop of the curve is given by the following integral:

A = \int\limits^{2\pi}_0 {[r(\theta)]^{2}} \, d\theta

A = 4\int\limits^{2\pi}_{0} {\sin^{2}5\theta} \, d\theta

By using trigonometrical identities, the integral is further simplified:

A = 4\int\limits^{2\pi}_{0} {\frac{1-\cos 10\theta}{2} } \, d\theta

A = 2 \int\limits^{2\pi}_{0} {(1-\cos 10\theta)} \, d\theta

A = 2\int\limits^{2\pi}_{0}\, d\theta - 2\int\limits^{2\pi}_{0} {\cos10\theta} \, d\theta

A = 2\cdot (2\pi - 0) - \frac{1}{5}\cdot (\sin 20\pi-\sin 0)

A = 4\pi

The area of the region enclosed by one loop of the curve r(\theta) = 2\cdot \sin 5\theta is 4\pi.

5 0
2 years ago
How much time does it take a rhino running at 40 m/s to run 250 m?​
lions [1.4K]

Answer:

Rhinoceroses are odd-toed ungulates native to sub-Saharan Africa and southern Asia, though all five living species have hugely contracted in range and number due to the influence of humans. Despite their titanic, tank-like bulk, rhinos can be amazingly swift: The fastest may reach at least 50 kilometers per hour (31 mph).

Explanation:

sana makatulong

8 0
3 years ago
the engine of a car of amass of 2000 kg produced a force of 15000N find the acceleration of the car​
weqwewe [10]
I believe the answer would be 7.5 m/s^2
3 0
3 years ago
A bullet with mass 1.0kg and velocity 180 m/s is brought to rest in 0.02 s by a sandbag.assuming constant acceleration in the sa
kotykmax [81]
Hello
The bullet is moving by uniformly accelerated motion.
The initial velocity is v_i=180~m/s, the final velocity is v_i=0~m/s, and the total time of the motion is \Delta t=0.02~s, so the acceleration is given by
a= \frac{v_f-v_i}{\Delta t} = -9000~m/s^2 
where the negative sign means that is a deceleration.
Therefore we can calculate the total distance covered by the bullet in its motion using
S=v_i t + \frac{1}{2}at^2 = 180~m/s \cdot 0.02~s + \frac{1}{2}(-9000~m/s^2)(0.02~s)^2=1.8~m
So, the bullet penetrates the sandbag 1.8 meters.
5 0
2 years ago
Include units with all of your answers. A 1.84 kg bucket full of water is attached to a 0.76 m long string.
aleksandrvk [35]
<span>c. What is the magnitude of the tension in the string at the bottom of the circle if you are swinging it at 3.37 m/s? </span>
7 0
3 years ago
Other questions:
  • A car races around a circular track. Friction on the tires is the what that acts toward the center of the circle and keeps the c
    6·1 answer
  • A person standing on the edge of a high cliff throws a rock straight up with an initial velocity, v0v0, of 13.0m/s13.0m/s. on th
    11·1 answer
  • Where are the life forms of the biosphere located
    13·1 answer
  • Dale (m = 75 kg) skis across a horizontal surface at a velocity of 5 m/s to the west. He drags his ski
    5·1 answer
  • hydroelectric energy is based on the blank energy of water being converted to blank energy as waterfalls and pushes against the
    12·2 answers
  • Chris shoots an arrow up into the air. The height of the arrow is given by the function h(t) = - 16t2 + 32t + 26 where t is the
    7·1 answer
  • What is the significance of the similar number and arrangement of bones in human arm and a bat wing
    7·1 answer
  • HELP PLEASE
    15·2 answers
  • Will give correct answer brainliest
    6·1 answer
  • Is this charging by induction or conduction?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!