<u>We are Given:</u>
Mass of the block (m) = 500 grams or 0.5 Kg
Initial velocity of the block (u) = 0 m/s
Distance travelled by the block (s) = 8 m
Time taken to cover 8 m (t)= 2 seconds
Acceleration of the block (a) = a m/s²
<u>Solving for the acceleration:</u>
From the seconds equation of motion:
s = ut + 1/2* (at²)
<em>replacing the variables</em>
8 = (0)(2) + 1/2(a)(2)²
8 = 2a
a = 4 m/s²
Therefore, the acceleration of the block is 4 m/s²
Answer:
Range, 
Explanation:
The question deals with the projectile motion of a particle mass M with charge Q, having an initial speed V in a direction opposite to that of a uniform electric field.
Since we are dealing with projectile motion in an electric field, the unknown variable here, would be the range, R of the projectile. We note that the electric field opposes the motion of the particle thereby reducing its kinetic energy. The particle stops when it loses all its kinetic energy due to the work done on it in opposing its motion by the electric field. From work-kinetic energy principles, work done on charge by electric field = loss in kinetic energy of mass.
So, [tex]QER = MV²/2{/tex} where R is the distance (range) the mass moves before it stops
Therefore {tex}R = MV²/2QE{/tex}