-3.5mls squared = a
0mls = 21mls + a(6s)
-21mls/6s
The equation used in this is vf = vi + at
Hope this helps!
Power is equal to work divided by time
Answer:
The correct option is;
The acceleration remains constant
Explanation:
The acceleration is due to the force of gravitational attraction between the text book and the Earth
According to Newton's law of gravitation, there is an attractive force between all objects given by the following relation;
F = G×M₁×m₂/r²
Where;
G, M₁, m₂, and r are constant such that we have;
G×M₁/r² = Constant = The acceleraton due to gravity, g
F = g×m₂
So the acceleration of the textbook as it is being attracted by the force of gravity towards the ground (Earth) is remains constant.
<span> <span> The answer to your question is: increase the force applied to the object.
Two items are provided as a basis for that conclusion:
1. According to Newton's Second Law of Motion, the formula for finding force is: F = ma
where F is the force,
m is the mass of an object,
and a is the acceleration of the object.
And 2: work = force x distance or W = F x d.</span></span>
Answer:
Explanation:
3.64 x 10⁶ J passes through 6 walls
heat energy passing through 1 wall = 0.606 x 10⁶ J
Surface Area of 1 wall A = .285² = 0.081225 m²
Temperature Difference = T₁ - T₂ = 26.8 + 94.7 = 121.5
Thickness of wall d = 3.75 x 10⁻² m
Rate of heat flow per second R = 
=7.01 J per s.
Formula for rate of heat flow
R = 
Where K is thermal conductivity.
7.01 = 
K = 2.66 X 10⁻² W m⁻¹s⁻¹