Answer:
Melting butter
Explanation:
You can reverse the change of butter back to its original state but you can never reverse the rest back to there original state
Answer:
1) Increasing temperature
2) Stirring
3) Increasing surface area of salt by grinding it
Answer:
a) pH = 4.213
b) % dis = 2 %
Explanation:
Ch3COONa → CH3COO- + Na+
CH3COOH ↔ CH3COO- + H3O+
∴ Ka = 1.8 E-5 = ([ CH3COO- ] * [ H3O+ ]) / [ CH3COOH ]
mass balance:
⇒ <em>C</em> CH3COOH + <em>C</em> CH3COONa = [ CH3COOH ] + [ CH3COO- ]
<em>∴ C </em>CH3COOH = 3.40 mM = 3.4 mmol/mL * ( mol/1000mmol)*(1000mL/L)
∴ <em>C</em> CH3COONa = 1.00 M = 1.00 mol/L = 1.00 mmol/mL
⇒ [ CH3COOH ] = 4.4 - [ CH3COO- ]
charge balance:
⇒ [ H3O+ ] + [ Na+ ] = [ CH3COO- ] + [ OH- ]....is negligible [ OH-], comes from water
⇒ [ CH3COO- ] = [ H3O+ ] + 1.00
⇒ Ka = (( [ H3O+ ] + 1 )* [ H3O+ ]) / ( 3.4 - [ H3O+])) = 1.8 E-5
⇒ [ H3O+ ]² + [ H3O+ ] = 6.12 E-5 - 1.8 E-5 [ H3O+ ]
⇒ [ H3O+ ]² + [ H3O+ ] - 6.12 E-5 = 0
⇒ [ H3O+ ] = 6.12 E-5 M
⇒ pH = - Log [ H3O+ ] = 4.213
b) (% dis)* mol acid = <em>C</em> CH3COOH = 3.4
∴ mol CH3COOH = 500*3.4 = 1700 mmol = 1.7 mol
⇒ % dis = 3.4 / 1.7 = 2 %
Answer:
A . 6.3 In a healthy pond, the temperature is 16°C (61°F). What is the most likely pH of this pond
Answer:
Explanation:
Reaction given
6 H⁺ + 2 MnO₄⁻ + 5 (COOH)₂ = 10CO₂ +8H₂O + 2 Mn⁺²
Oxidation number of Mn in MnO₄⁻
= x - 4 x 2 = -1
x = 8 -1
+ 7
Oxidation no of Mn in Mn⁺² = +2
So its oxidation no is decreased from + 7 to + 2 . Hence it is reduced.