Your answer is boron,
I looked at the periodic table, there is nothing else that falls under this specs.
Answer:Four types of vaccines are currently available: Live virus vaccines use the weakened (attenuated) form of the virus. The measles, mumps, and rubella (MMR) vaccine and the varicella (chickenpox) vaccine are examples
The correct answer is option B.
The liquid or gas that carries the sample across the solid support is called mobile phase.
In chromatography, there are two phases: mobile phase and solid phase.
The mobile phase can be either in gas form or liquid form.
While performing the chromatography technique, mobile phase moves over the stationary phase and its components adsorb to the stationary phase and set apart from each other at different rates.
In general, mobile phase refers to the solvent phase that slides over the stationary phase through the chromatography paper.
on the other hand, stationary phase is motionless.
If you need to learn more about gas click here:
brainly.com/question/28010290
#SPJ4
The solute is the part of the solution that dissolves in the second component (usually a fluid). Therefore, for the mentioned solution, the solute is ehyl alcohol since it is the one dissolving in water.
As for the solvent, it is the component in which the solute dissolves. In this case, it is water.
The masses can be found by substractions:
- Mass of CaSO₄.H2O (hydrate):
16.05 g - 13.56 g = 2.49 g
15.07 g - 13.56 g = 1.51 g
- The mass of water is equal to the difference between the mass of the hydrate and the mass of the anhydrate:
2.49 g - 1.51 g = 0.98 g
- The percent of water is found by the formula:
massWater ÷ massHydrate * 100%
0.98 g ÷ 2.49 g * 100% = 39.36%
- The mole of water is calculated using water's molecular weight (18g/mol):
0.98 g ÷ 18 g/mol = 0.054 mol water
- A similar procedure is made for the mole of salt (CaSO₄ = 136.14 g/mol)
1.51 g ÷ 136.14 g/mol = 0.011 mol CaSO₄
- The ratio of mole of water to mole of anhydrate is:
0.054 mol water / 0.011 mol CaSO₄ = 0.49
In other words the molecular formula for the hydrate salt is CaSO₄·0.5H₂O