The answer is b because compound cannot be chemically bounded.
Diffusion occure due to temperature
The numbers in front of the formulas
Answer:
f = 1.09 × 10¹⁵ Hz
Explanation:
Given data:
Frequency of wave = ?
Wavelength of wave = 2.73 ×10⁻⁷ m
Solution:
Formula:
Speed of light = frequency × wavelength
speed of light = 3× 10⁸ m/s
by putting values,
3× 10⁸ m/s = f × 2.73 ×10⁻⁷ m
f = 3× 10⁸ m/s / 2.73 ×10⁻⁷ m
f = 1.09 × 10¹⁵s⁻¹
s⁻¹ = Hz
f = 1.09 × 10¹⁵ Hz
Answer:
Supersaturated.
Explanation:
Hello there!
In this case, according to this solubility chart, we infer that for NH3, the solubility starts at 90 grams of NH3 that are soluble in 100 g of water at 0 °C and ends in about 8 g in 100 g of water at 100 °C for a saturated solution.
However, since we are asked for the solubility of NH3 at 20 °C, we can see that, according to the table and the curve for NH3, about 52 g of NH3 are soluble in 100 g of water; thus, for the given 60 g of NH3, we will say that 8 grams will remain undissolved, and therefore, this solution will be supersaturated.
Regards!