Work is the amount of energy transferred
Explanation:
In physics, work is a measure of the energy transfer occurring in a process. Typically, we talk about work when energy is converted from one form into another.
For instance, work is done when a force is applied on an object. The work done on the object is given by:

where
where
F is the magnitude of the force
d is the displacement
is the angle between the direction of the force and of the displacement
We notice the following:
- No work is done when the force is perpendicular to the displacement (
) - The work is maximum when the force is parallel to the displacement
Whenever work is done, there is also an energy transfer taking place. For instance, in the previous example, when the force is applied to the object, the object will accelerate (assume there is no friction), and will gain kinetic energy: therefore, there is a transfer of energy to the object.
Learn more about work:
brainly.com/question/6763771
brainly.com/question/6443626
#LearnwithBrainly
-- If the system is 'closed', then nothing ... including energy ... can get in or out, and the total energy inside has to be constant.
If half of the energy in the system starts out as potential energy and the rest starts out as kinetic, and then the potential energy increases, there's only one place the increase could have come from ... it could only have been converted from kinetic energy. So the <em>kinetic energy</em> in the system <em>must</em> <em>decrease</em>.
In fact, this isn't even a "result". The kinetic energy has to decrease <em><u>before</u></em> the potential energy can increase, because that's where the increase has to come from.
If the system is 'open', then energy can come in and go out. If the potential energy inside suddenly increases, we don't know where it came from, so we can't say anything about what happens to the system.
I really don’t know but I think it’s D
Answer = 6.24x10^18 x ((2 x 3600) + (47 x 60) + 10)
Because the hamburger is still hot from the grill, the cheese melts because of that heat.