Alkenes on reacting with ozone results in the formation of ozonide which undergo reductive cleavage in presence of dimethyl sulfide to form carbonyl compounds (aldehyde or ketone). Whereas in presence of hydrogen peroxide it undergoes oxidative cleavage to form carboxylic acids or ketones.
Since, A alkene yields 4-heptanone only on treatment with ozone and DMS thus, it implies that both the chains on the side of the double-bond are similar the product is 4-heptanone that means the double bond is present between the chains at the 4th carbon. Therefore the structure of compound A is 4,5-dipropyloct-4-ene.
The reaction is as shown in the image.
The reaction of A with m-CPBA (meta-perchlorobenzoic acid) followed by aqueous acid
is shown in the image.
m-CPBA (meta-perchlorobenzoic acid) is a peracid and forms epoxides on reacting with alkenes.
Names of Ionic Compounds<span>. </span>Name<span>. </span>CHEMISTRY<span>: A Study of Matter. © 2004, GPB. 6.16a. KEY. </span>Write<span> the </span>name<span> of </span>each ionic compound below. 1. MgS<span>. </span>2. FeO ... magnesium sulfide iron (II<span>) </span>oxide<span>barium sulfite </span>aluminum<span> hydroxide.</span>
Seven valence electrons .
Answer:
isopropanol + oxygen Right arrow. carbon dioxide + water + heat
Explanation:
Word equation:
isopropanol + oxygen → carbon dioxide + water + heat
Chemical equation:
2C₃H₇OH + 9O₂ → 6CO₂ + 8H₂O + Heat
The given reaction is combustion of isopropanol. Isopropanol burn in the presence of oxygen and produced carbon dioxide and water. Heat is also produced in this reaction.
The given reaction also follow the law of conservation of mass. There are equal number of moles of each element on both side of reaction equation thus mass remain conserved.