Explanation:
The only flaw I can find is you squared 3 instead of cubing it and it will be 27X^4 instead of 9x^4.
This reduces the amount slightly, but the number is still incredibly high (about 10 ^ 5 L is what I've calculated). Your professor might want to point out that this will not be a effective experiment due to the large volume of saturated
The Ksp value of Ca(OH)2 on the site (I used 5.5E-6 [a far more soluble compound than Al(OH)3]) and estimated how much of it will be needed. My calculation was approximately 30 ml. If you were using that much in the experiment, it implies so our estimates for Al(OH)3 are right, that the high amount is unreasonably big and that Al(OH)3 will not be a suitable replacement unless the procedure was modified slightly.
Answer:
The wood is oak.
Explanation:
Given data:
Mass of wood = 70 g
Volume of wood = 103 cm³
Wood is oak = ?
Solution:
We will calculate the density of wood then we will compare it with literature value.
Density = mass/ volume
d = 70 g/ 103 cm³
d = 0.68 g/cm³
The density of oak is 0.59 - 0.90 g/cm³.
So its true, wood is oak.
Volume of 1 mol of gas at standard temperature and pressure is 22.4 L.
That is using ideal gas equation:
PV = nRT
P=pressure
V=volume
n=number of moles
R=gas constant
T=temperature
at STP,
P=1 atm
T=273K
n=1(given)
Putting all the values in the equation will give,
V= 22.4 L
So, the answer is :
The volume of 1 mol of gas at standard temperature and pressure is 22.4 L.
<u>Answer:</u> The correct answer is option A.
<u>Explanation:</u>
Nuclear fission reactions are a type of nuclear reactions in which larger nuclei breaks apart into two or more smaller fragment releasing alpha, gamma of beta particles.
There are 3 types of particles that can be released during this process:
1. Alpha particles: These particles are released when a nuclei undergoes alpha-decay process.

2. Beta particles: These particles are released when a nuclei undergoes beta-minus decay process.

3. Gamma radiations: these radiations are released when an unstable nuclei gives off excess energy by a process of spontaneous electromagnetic process.

Hence, any of these particles can be released during the process of fission reaction with smaller atoms.
Therefore, the correct answer is option A.
<h3>
Answer:</h3>
915 Joules
<h3>
Explanation:</h3>
- The heat of fusion is the heat that is required to convert a given mass of a substance from solid state to liquid state without change in temperature.
- In this case, we are given specific heat of a substance as 122 joules per gram
- It means that amount of heat equivalent to 122 joules is required to change 1 gram of the substance from solid state to liquid state.
- Therefore, we can determine the amount of heat needed to change 7.5 grams of the substance from solid to liquid state.
1 g = 122 Joules
7.5 g = ?
= 122 × 7.5
= 915 Joules
Thus, 7.5 g of the substance at its melting point will require 915 Joules of heat to melt.