<span>Answer:
For a disc, the moment of inertia about the perpendicular axis through the center is given by 0.5MR^2.
where M is the mass of the disc and R is the radius of the disc.
For the axis through the edge, use parallel axis theorem.
I = I(axis through center of mass) + M(distance between the axes)^2
= 0.5MR^2 + MR^2 (since the axis through center of mass is the axis through the center)
= 1.5 MR^2</span>
Answer:
a
Explanation:
because they are easily reduced and oxidised
Answer:
θ_c = 36.87°
Explanation:
Index of refraction for index medium; n_i = 2
Index of refraction for Refractive medium; n_r = 1.2
Formula to find the critical angle is given;
n_i(sin θ_c) = n_r(sin 90)
Where θ_c is critical angle.
Thus;
2 × (sin θ_c) = 1.2 × 1
(sin θ_c) = 1.2/2
(sin θ_c) = 0.6
θ_c = sin^(-1) 0.6
θ_c = 36.87°
Aerobic dance<span> has its foundation in </span>dance<span>-inspired movements. It is a cardiovascular workout set to music in a group </span>exercise<span> setting. You do not have to memorize </span>dance<span> moves, as the classes are taught by instructors who verbally tell and visually show the </span>choreography<span>.</span>
Answer:
Twice
Explanation:
From the formula for velocity in a circle
V= 2πr/T
Where V is velocity
r is raduis
T is period
We see that as r increases V increases so if r is doubled V becomes doubled