Answer:
1.5 moles of Fe produced.
Explanation:
Given data:
Moles of FeO react = 1.50 mol
Moles of iron produced = ?
Solution:
Chemical equation:
FeO + CO → Fe + CO₂
Now we will compare the moles of ironoxide with iron.
FeO : Fe
1 : 1
1.5 : 1.5
Thus from 1.5 moles of FeO 1.5 moles of Fe are produced.
Answer: 26.5 mm Hg
Explanation:
The vapor pressure is determined by Clausius Clapeyron equation:

where,
= initial pressure at
= ?
= final pressure at
= 100 mm Hg
= enthalpy of vaporisation = 28.0 kJ/mol =28000 J/mol
R = gas constant = 8.314 J/mole.K
= initial temperature = 
= final temperature =
Now put all the given values in this formula, we get
![\log (\frac{P_1}{100})=\frac{28000}{2.303\times 8.314J/mole.K}[\frac{1}{299.5}-\frac{1}{267.9}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7BP_1%7D%7B100%7D%29%3D%5Cfrac%7B28000%7D%7B2.303%5Ctimes%208.314J%2Fmole.K%7D%5B%5Cfrac%7B1%7D%7B299.5%7D-%5Cfrac%7B1%7D%7B267.9%7D%5D)



Thus the vapor pressure of
in mmHg at 26.5 ∘C is 26.5
(a) In this section, give your answers to three decimal places.
(i)
Calculate the mass of carbon present in 0.352 g of CO
2
.
Use this value to calculate the amount, in moles, of carbon atoms present in 0.240 g
of
A
.
(ii)
Calculate the mass of hydrogen present in 0.144 g of H
2
O.
Use this value to calculate the amount, in moles, of hydrogen atoms present in 0.240 g
of
A
.
(iii)
Use your answers to calculate the mass of oxygen present in 0.240 g of
A
Use this value to calculate the amount, in moles, of oxygen atoms present in 0.240 g
of
A
(b)
Use your answers to
(a)
to calculate the empirical formula of
A
thank you
hope it helpsss
Answer: The percent yield of the reaction is 77.0 %
Explanation:




According to stoichiometry:
2 moles of
produces = 2 moles of 
2.18 moles of
is produced by=
of 
Mass of
=
percent yield =