Answer:

Explanation:
Given that,
Initial angular velocity, 
Acceleration of the wheel, 
Rotation, 
Let t is the time. Using second equation of kinematics can be calculated using time.

Let
is the final angular velocity and a is the radial component of acceleration.

Radial component of acceleration,

So, the required acceleration on the edge of the wheel is
.
Air pressure is the wi get of air molecules pressing down on the earth. The pressure of the air molecules changes as you move upward from sea level into the atmosphere, the highest pressure is at sea level where the density of the air molecules is the greatest.
Answer:
2.71 m
Explanation:
Force is the product of mass and acceleration
F=m*a
Work done is the product of force and distance
Work done=F*d
In this case;
F= 35 N
Work done = 95 J
95 =35 * d
95 /35 = d
2.71 m= d
Answer:
option D
Explanation:
given.
horizontal velocity of arrow and a ball given as 50 m/s and 44 m/s respectively from the top of a building over flat ground.
In vertical direction, they are both identical
In vertical direction the initial velocity of arrow and a ball is 0 m/s
Their acceleration due to gravity is same for both arrow and a ball 9.8 m/s²
they will react bottom at the same time
time of flight is same for both
now,
In horizontal direction,
distance = speed × time
Since speed is more for arrow, it will travel more horizontal distance at the same time.
the correct answer is option D
The volcanic ashes from the volcano