Answer:
The direction the plane would have to fly to compensate for a wind velocity of 62.0 km/h[N] is 4.5° S of W
Explanation:
The given parameters are;
Velocity of Jet = 792 km/h
Direction of jet velocity = West
Velocity of wind = 62.0 km/h
Direction of wind velocity = North
Therefore, the jet has to have a component of 62.0 km/h South of West to compensate for the wind velocity
The direction of the plane, θ° South of West (S of W) to compensate for the wind is given as follows;

Therefore;

The direction the plane would have to fly to compensate for a wind velocity of 62.0 km/h[N] = 4.5° S of W.
An electric current produces a magnetic field when the current flows through a wire. The correct answer will be A.
Given:
ρ = 13.6 x 10³ kg/m³, density of mercury
W = 6.0 N, weight of the mercury sample
g = 9.81 m/s², acceleration due to gravity.
Let V = the volume of the sample.
Then
W = ρVg
or
V = W/(ρg)
= (6.0 N)/[(13.6 x 10³ kg/m³)*(9.81 m/s²)]
= 4.4972 x 10⁻⁵ m³
Answer: The volume is 44.972 x 10⁻⁶ m³
90 degrees - 30 = 60 degrees
Velocity = (5m/s - 4.35m/s x cos(30)) / cos(60)
Velocity = 2.47 m/s
The answer is D) 2.47 m/s at 61.9 degrees
I'm not sure but I know u is 10^6