The frequency of the oscillation in hertz is calculated to be 0.00031 Hz.
The frequency of a wave is defined as the number of cycles completed per second while the period refers to the time taken to complete a cycle. The frequency is the inverse of period.
So;
Period(T) = 54 minutes or 3240 seconds
Frequency (f) = T-1 = 1/T = 1/3240 seconds = 0.00031 Hz
Learn more: brainly.com/question/14588679
Electro waves in a vacuum air is deals with this and electricity when the air and the electricity it makes electro magnets.
For the majority of instruments f = n f0 where f is the resonating frequency, n is any whole number and f0 is the fundamental.
<span>This applies to trumpets, violins, flutes and a broad range. </span>
<span>In such a </span>case<span> the first harmonic would be at n=1 and the second harmonic would be at n=2 </span>
<span>which gives a frequency of 84 Hz</span>
Answer:
Moment of inertia of the solid sphere:
I
s
=
2
5
M
R
2
.
.
.
.
.
.
.
.
.
.
.
(
1
)
Is=25MR2...........(1)
Here, the mass of the sphere is
M
M
Answer:
0.42 m/s²
Explanation:
r = radius of the flywheel = 0.300 m
w₀ = initial angular speed = 0 rad/s
w = final angular speed = ?
θ = angular displacement = 60 deg = 1.05 rad
α = angular acceleration = 0.6 rad/s²
Using the equation
w² = w₀² + 2 α θ
w² = 0² + 2 (0.6) (1.05)
w = 1.12 rad/s
Tangential acceleration is given as
= r α = (0.300) (0.6) = 0.18 m/s²
Radial acceleration is given as
= r w² = (0.300) (1.12)² = 0.38 m/s²
Magnitude of resultant acceleration is given as


= 0.42 m/s²