<u>Answer:</u> This violates the law of constant composition.
<u>Explanation:</u>
Dalton's theory is based on mainly two laws, which are law of conservation of mass and law of constant composition.
Law of constant composition states that a compound always contain the elements in the fixed ratio by their masses.
For Example: In water
, the hydrogen and oxygen are present in the fixed ratio of 1 : 9 by their mass.
We are given:
A sample of titanium dioxide having 59.95 % of titanium and another sample of titanium dioxide having 60.10 % of titanium.
As, the compound is titanium dioxide. So, the mass percent of titanium must remain the same in both the elements.
Hence, this violates the law of constant composition.
Answer:
Explanation:
The oxidation number is an integer that represents the number of electrons that an atom receives or makes available to others when it forms a given compound.
The oxidation number is positive if the atom loses electrons, or shares them with an atom that has a tendency to accept them. And it will be negative when the atom gains electrons, or shares them with an atom that has a tendency to give them up.
Chemical compounds are electrically neutral. That is, the charge that all the atoms of a compound contribute must be globally null. That is, when having positive or negative charges in a compound, their sum must be zero.
There are some rules for determining oxidation numbers in compounds. Among them it is possible to mention:
- Hydrogen (H) has an oxidation number +1 with nonmetals and - 1 with metals.
- Oxygen (O) presents the oxidation number -2
- Fluorine F has a unique oxidation state -1
Then:
- NOF: N+(-2)+(-1)=0 → N=3 → oxidation number of nitrogen (N) is +3, oxidation number of oxygen (O) is -2 and oxidation number of fluorine (F) is -1.
- ClF₅: Cl + 5*(-1)=0 → Cl= 5 → oxidation number of chlorine (Cl) is +5 and oxidation number of fluorine (F) is -1.
- H₂SO₃: 2*(+1)+S+3*(-2)=0 → S=4 → oxidation number of hydrogen (H) is +1, oxidation number of oxygen (O) is -2 and oxidation number of sulfur (S) is +4.
#2 reactivity is the answer
In this case a double displacement reaction will take place.