Answer:
Final concentration of C at the end of the interval of 3s if its initial concentration was 3.0 M, is 3.06 M and if the initial concentration was 3.960 M, the concentration at the end of the interval is 4.02 M
Explanation:
4A + 3B ------> C + 2D
In the 3s interval, the rate of change of the reactant A is given as -0.08 M/s
The amount of A that has reacted at the end of 3 seconds will be
0.08 × 3 = 0.24 M
Assuming the volume of reacting vessel is constant, we can use number of moles and concentration in mol/L interchangeably in the stoichiometric balance.
From the chemical reaction,
4 moles of A gives 1 mole of C
0.24 M of reacted A will form (0.24 × 1)/4 M of C
Amount of C formed at the end of the 3s interval = 0.06 M
If the initial concentration of C was 3 M, the new concentration of C would be (3 + 0.06) = 3.06 M.
If the initial concentration of C was 3.96 M, the new concentration of C would be (3.96 + 0.06) = 4.02 M
Three of them may have decayed more quickly or more slowly than they should have according to the likelihood at that particular moment. However, suppose we have a lot of radioactive new Clyde's, say six times 10 to the 12, and we have three times 10 to the 12 in a minute. The rate may then be averaged out because there are a sufficient number of radioactive new Clyde's. Furthermore, we can say with confidence that the half life is one minute.
<h3>What is radioactivity?</h3>
Radioactivity, as its name suggests, is the act of generating radiation without any external cause. An atomic nucleus that is unstable for whatever reason does this by "wanting" to give up some energy in order to change its configuration to one that is more stable. Modern physics spent a lot of time in the first half of the 20th century figuring out why this occurs, which led to a pretty solid understanding of nuclear decay by 1960. A nucleus with too many neutrons will produce a negative beta particle, which will convert one of the neutrons into a proton. A nucleus with too many protons will emit positrons, which are positively charged electrons that turn protons into neutrons.
To know more about radioactivity:
brainly.com/question/1770619
#SPJ4
The percentage of Chromium in Chromium Oxide is calculated as follow,
Step 1: Calculate Molar mass of Cr₂O₃,
Cr = 51.99 u
O = 16 u
So,
2(51.99) + 3(16) = 103.98 + 48 = 151.98 u
Step 2: Secondly divide molar mass of only chromium with total mass of Cr₂O₃ and multiply with 100.
i.e.
=
× 100
=
68.41 %
So, the %age composition of chromium in chromium oxide is
68.41 %.