1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vitfil [10]
3 years ago
15

A ball of mass 0.165 kg is dropped from rest from a height of 1.25 m. It rebounds from the floor to reach a height of 0.940 m. W

hat impulse was given to the ball by the floor?
Physics
1 answer:
Dmitriy789 [7]3 years ago
6 0

Answer:

I = 1.525 kg.m/s

Explanation:

given,

mass of the ball = 0.165 Kg

height of drop, h = 1.25 m

ball rebound and reach to height, h' = 0.940 m

impulse = ?

using conservation of energy

Potential energy is converted into kinetic energy

mgh = \dfrac{1}{2}mv^2

v=\sqrt{2gh}

v=\sqrt{2\times 9.8 \times 1.25}

  v = 4.95 m/s

velocity of the ball after rebound

again using conservation of energy

mgh = \dfrac{1}{2}mv'^2

v'=\sqrt{2gh}

v'=\sqrt{2\times 9.8 \times 0.94}

  v' = 4.29 m/s

impulse is equal to change in momentum

I = m ( v' - v )

I = 0.165 x ( 4.29 - (-4.95))

I = 1.525 kg.m/s

You might be interested in
What is the momentum of an 80 kg runner moving at the speed of 2.5 m/s? Use the
Vladimir79 [104]

Answer:

200 kgm/s

Explanation:

momentum = mass x velocity

8 0
3 years ago
A 10.0 L tank contains 0.329 kg of helium at 28.0 ∘C. The molar mass of helium is 4.00 g/mol . Part A How many moles of helium a
nadya68 [22]

Answer:

82.25 moles of He

Explanation:

From the question given above, the following data were obtained:

Volume (V) = 10 L

Mass of He = 0.329 Kg

Temperature (T) = 28.0 °C

Molar mass of He = 4 g/mol

Mole of He =?

Next, we shall convert 0.329 Kg of He to g. This can be obtained as follow:

1 Kg = 1000 g

Therefore,

0.329 Kg = 0.329 Kg × 1000 g / 1 Kg

0.329 Kg = 329 g

Thus, 0.329 Kg is equivalent to 329 g.

Finally, we shall determine the number of mole of He in the tank. This can be obtained as illustrated below:

Mass of He = 329 g

Molar mass of He = 4 g/mol

Mole of He =?

Mole = mass / molar mass

Mole of He = 329 / 4

Mole of He = 82.25 moles

Therefore, there are 82.25 moles of He in the tank.

8 0
3 years ago
when an element tends to lose its valence electrons in chemical reactions , does it behave more like a metal or nonmetal
Juli2301 [7.4K]

It behaves more like a metal

Explanation:

When an element tends to lose its valence electrons in chemical reactions, they behave more like a metal.

Metals are electropositive.

Electropositivity or metallicity is the a measure of the tendency of atoms of an element to lose electrons.

This is closely related to ionization energy and the electronegativity of the element.

  • The lower the ionization energy of an element, the more electropositive or metallic the element is .

Metals are usually large size and prefers to be in reactions where they can easily lose their valence electrons.

When most metals lose their valence electrons, they attain stability.

Non-metals are electronegative. They prefer to gain electrons.

learn more:

Reactivity brainly.com/question/6496202

#learnwithBrainly

4 0
4 years ago
A wheel with moment of inertia 25 kg. m2 and angular velocity 10 rad/s begins to speed up, with angular acceleration 15 rad/sec2
Pani-rosa [81]

Answer:

(A) Angular speed 40 rad/sec

Rotation = 50 rad

(b) 37812.5 J

Explanation:

We have given moment of inertia of the wheel I=25kgm^2

Initial angular velocity of the wheel \omega _0=10rad/sec

Angular acceleration \alpha =15rad/sec^2

(a) We know that \omega =\omega _0+\alpha t

We have given t = 2 sec

So \omega =10+15\times  2=40rad/sec

Now \Theta =\omega _0t+\frac{1}{2}\alpha t^2=10\times 2+\frac{1}{2}\times 15\times 2^2=50rad

(b) After 3 sec \omega =10+15\times 3=55rad/sec

We know that kinetic energy is given by Ke=\frac{1}{2}I\omega ^2=\frac{1}{2}\times 25\times 55^2=37812.5J

7 0
3 years ago
Fe₂O3<br> + co<br> →<br> Fe3O4 + CO₂
Goryan [66]

Explanation:

                    Fe₂O₃  + CO  → Fe₃O₄ + CO₂

Balancing the equation above, we can derive simple mathematical equations that are very easy to solve.

             aFe₂O₃  + bCO  → cFe₃O₄ + dCO₂

a,b,c and d are the coefficients needed to balance the equation above;

  Conserving Fe; 2a = 3c

                       O: 3a + b = 4c + 2d

                        C: b = d

 let a = 1;

      c = \frac{2}{3}

      Since b = d

                  3a + d = 4c + 2d

                    3a = 4c + 2d - d

                     3a = 4c + d

           a = 1, c = \frac{2}{3}

                    3 = 4 x \frac{2}{3}  +  d

                   d = \frac{1}{3}

                    b = \frac{1}{3}

multiplying a, b, c and d by 3:

            a = 3    b = 1     c = 2   and d = 1

                  3Fe₂O₃  + CO  → 2Fe₃O₄ + CO₂

Learn more:

Balanced equation brainly.com/question/2612756

#learnwithBrainly

6 0
3 years ago
Other questions:
  • When 1.14 g of octane (molar mass = 114 g/mol) reacts with excess oxygen in a constant volume calorimeter, the temperature of th
    8·1 answer
  • A planet orbits a star, in a year of length 2.35 x 107 s, in a nearly circular orbit of radius 3.49 x 1011 m. With respect to th
    12·1 answer
  • An object moving in a constant velocity will always have a
    9·1 answer
  • Why do you see objects when you shine a flashlight in a dark room?​
    6·1 answer
  • Some bats have specially shaped noses that focus ultrasound echolocation pulses in the forward direction. Why is this useful?
    15·1 answer
  • PLEASE HELP ME!!<br> Use Element and Pure Substance in the same sentence.
    11·1 answer
  • Can I have some help
    15·1 answer
  • a 500-kg car is parked 20 M away from a 600 kg truck. what is the gravitational force between the two cars? Show the 4 steps.​
    6·2 answers
  • How many drive cycles can be completed with a initially fully charged battery?
    5·1 answer
  • A basketball is thrown with an initial upward velocity of feet per second from a height of feet above the ground. the equation m
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!