Answer:
200 kgm/s
Explanation:
momentum = mass x velocity
Answer:
82.25 moles of He
Explanation:
From the question given above, the following data were obtained:
Volume (V) = 10 L
Mass of He = 0.329 Kg
Temperature (T) = 28.0 °C
Molar mass of He = 4 g/mol
Mole of He =?
Next, we shall convert 0.329 Kg of He to g. This can be obtained as follow:
1 Kg = 1000 g
Therefore,
0.329 Kg = 0.329 Kg × 1000 g / 1 Kg
0.329 Kg = 329 g
Thus, 0.329 Kg is equivalent to 329 g.
Finally, we shall determine the number of mole of He in the tank. This can be obtained as illustrated below:
Mass of He = 329 g
Molar mass of He = 4 g/mol
Mole of He =?
Mole = mass / molar mass
Mole of He = 329 / 4
Mole of He = 82.25 moles
Therefore, there are 82.25 moles of He in the tank.
It behaves more like a metal
Explanation:
When an element tends to lose its valence electrons in chemical reactions, they behave more like a metal.
Metals are electropositive.
Electropositivity or metallicity is the a measure of the tendency of atoms of an element to lose electrons.
This is closely related to ionization energy and the electronegativity of the element.
- The lower the ionization energy of an element, the more electropositive or metallic the element is .
Metals are usually large size and prefers to be in reactions where they can easily lose their valence electrons.
When most metals lose their valence electrons, they attain stability.
Non-metals are electronegative. They prefer to gain electrons.
learn more:
Reactivity brainly.com/question/6496202
#learnwithBrainly
Answer:
(A) Angular speed 40 rad/sec
Rotation = 50 rad
(b) 37812.5 J
Explanation:
We have given moment of inertia of the wheel 
Initial angular velocity of the wheel 
Angular acceleration 
(a) We know that 
We have given t = 2 sec
So 
Now 
(b) After 3 sec 
We know that kinetic energy is given by 
Explanation:
Fe₂O₃ + CO → Fe₃O₄ + CO₂
Balancing the equation above, we can derive simple mathematical equations that are very easy to solve.
aFe₂O₃ + bCO → cFe₃O₄ + dCO₂
a,b,c and d are the coefficients needed to balance the equation above;
Conserving Fe; 2a = 3c
O: 3a + b = 4c + 2d
C: b = d
let a = 1;
c = 
Since b = d
3a + d = 4c + 2d
3a = 4c + 2d - d
3a = 4c + d
a = 1, c = 
3 = 4 x
+ d
d = 
b = 
multiplying a, b, c and d by 3:
a = 3 b = 1 c = 2 and d = 1
3Fe₂O₃ + CO → 2Fe₃O₄ + CO₂
Learn more:
Balanced equation brainly.com/question/2612756
#learnwithBrainly