Answer:
B) mixture
Explanation:
Many homogeneous mixtures are commonly referred to as solutions. A heterogeneous mixture consists of visibly of three phases or states of matter are gas, liquid, and solid.
The correct matches are:
1. Exosphere - Temperatures reach as high as 2000 C yet it feels very cold
This is the top layer of the atmosphere. The atoms are so dispersed that despite it having very high temperature it doesn't feel like it at all.
2. Thermosphere - Particles that have enough energy can escape into space
The thermosphere is the fourth highest layer of the atmosphere. The atoms in this layer are relatively distant from one another, so the particles that have enough energy manage to escape easily into the exosphere and then the space.
3. Mesosphere - It is the coldest region of the atmosphere
The mesosphere is the third highest layer. In this layer the temperatures constantly drop, and they go down to -85 degrees, making it the coldest layer by far.
4. Stratosphere - Ninety percent ozone is in this layer
The startosphere has a separte zone in it which is dominated by only one gas, the ozone. It is called the ozone layer, the one that protects the Earth from too intense UV radiation, and in fact over 90% of this gas is locate here.
5. Troposphere - It is warm due to the heat from Earth's surface
The troposphere is the densest and lowest of the layers. It is the one that also has Greenhouse gases which manage to trap the heat that is radiated from the surface of the Earth, thus keeping this layer relatively warm.
Answer:
is the isotopic notation of the atom
Explanation:
The isotope notation is:

<em>Where a is the mass number = Number of protons + Number of neutrons</em>
<em>b is atomic number = Number of protons</em>
The atomic number define the nature of the atom, the element with atomic number = 15 is phosphorus, P:

a = 15 protons + 16 neutrons = 31
b = 15
is the isotopic notation of the atom.
Molarity is measured in moles per Liter. If there are 1.35 g/mL, find out how many grams there are in a liter of solution.
If there are 1000 mL in one liter, we can multiply by 1000 to get g/L
1.35 g/mL x 1 Liter/1000 mL = 1350 g per Liter of solution
By weight, the NaOH is 33% or .33
1350 g x .33 = 445.5 g of NaOH
Molar mass of NaOH is 39.997 g
445.5 g x 1 mol NaOH/39.997 g = 11.13833538 moles per Liter
Rounded to significant figures, the answer is 11 mol/L NaOH