1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slava [35]
3 years ago
5

Usain Bolt's world-record 100 m sprint on August 16, 2009, has been analyzed in detail. At the start of the race, the 94.0 kg Bo

lt accelerated from rest at a rate of 9.50 m/s^2 for the first 0.890 s, and eventually reached a top speed of 12.4 m/s by exerting an average horizontal force of 820 N against the ground for the entire 9.58 s duration of the race. a. What was the average horizontal force (in N) exerted by Bolt against the ground during the first 0.890 s of the race?b. What was Bolt's speed (in m/s) after the initial acceleration phase?c. What was the power expended by Bolt during the initial acceleration phase?d. It has been shown that, because of his large frame and 6'5" height, Bolt experienced significant drag forces during the sprint. To estimate the energy lost to drag forces during the race, let's focus on the remaining 9.58 s − 0.890 s = 8.69 s of the race after Bolt's initial burst of acceleration. The drag force varies with speed, but let's find an average drag force over the last 8.69 s of the race. Model the drag force as a friction force and find the increase in internal energy of Bolt and the surrounding air in these 8.69 s as Bolt runs through the air.e. Finally, find the power that Bolt must expend just to overcome the drag force and compare it to the result in part (c).
Physics
1 answer:
ZanzabumX [31]3 years ago
3 0

a) 893 N

b) 8.5 m/s

c) 3816 W

d) 69780 J

e) 8030 W

Explanation:

a)

The net force acting on Bolt during the acceleration phase can be written using Newton's second law of motion:

F_{net}=ma

where

m is Bolt's mass

a is the acceleration

In the first 0.890 s of motion, we have

m = 94.0 kg (Bolt's mass)

a=9.50 m/s^2 (acceleration)

So, the net force is

F_{net}=(94.0)(9.50)=893 N

And according to Newton's third law of motion, this force is equivalent to the force exerted by Bolt on the ground (because they form an action-reaction pair).

b)

Since Bolt's motion is a uniformly accelerated motion, we can find his final speed by using the following suvat equation:

v=u+at

where

v is the  final speed

u is the initial speed

a is the acceleration

t is the time

In the first phase of Bolt's race we have:

u = 0 m/s (he starts from rest)

a=9.50 m/s^2 (acceleration)

t = 0.890 s (duration of the first phase)

Solving for v,

v=0+(9.50)(0.890)=8.5 m/s

c)

First of all, we can calculate the work done by Bolt to accelerate to a speed of

v = 8.5 m/s

According to the work-energy theorem, the work done is equal to the change in kinetic energy, so

W=K_f - K_i = \frac{1}{2}mv^2-0

where

m = 94.0 kg is Bolt's mass

v = 8.5 m/s is Bolt's final speed after the first phase

K_i = 0 J is the initial kinetic energy

So the work done is

W=\frac{1}{2}(94.0)(8.5)^2=3396 J

The power expended is given by

P=\frac{W}{t}

where

t = 0.890 s is the time elapsed

Substituting,

P=\frac{3396}{0.890}=3816 W

d)

First of all, we need to find what is the average force exerted by Bolt during the remaining 8.69 s of motion.

In the first 0.890 s, the force exerted was

F_1=893 N

We know that the average force for the whole race is

F_{avg}=820 N

Which can be rewritten as

F_{avg}=\frac{0.890 F_1 + 8.69 F_2}{0.890+8.69}

And solving for F_2, we find the average force exerted by Bolt on the ground during the second phase:

F_{avg}=\frac{0.890 F_1 + 8.69 F_2}{0.890+8.69}\\F_2=\frac{(0.890+8.69)F_{avg}-0.890F_1}{8.69}=812.5 N

The net force exerted by Bolt during the second phase can be written as

F_{net}=F_2-D (1)

where D is the air drag.

The net force can also be rewritten as

F_{net}=ma

where

a=\frac{v-u}{t} is the acceleration in the second phase, with

u = 8.5 m/s is the initial speed

v = 12.4 m/s is the final speed

t = 8.69 t is the time elapsed

Substituting,

a=\frac{12.4-8.5}{8.69}=0.45 m/s^2

So we can now find the average drag force from (1):

D=F_2-F_{net}=F_2-ma=812.5 - (94.0)(0.45)=770.2 N

So the increase in Bolt's internal energy is just equal to the work done by the drag force, so:

\Delta E=W=Ds

where

d is Bolt's displacement in the second part, which can be found by using suvat equation:

s=\frac{v^2-u^2}{2a}=\frac{12.4^2-8.5^2}{2(0.45)}=90.6 m

And so,

\Delta E=Ds=(770.2)(90.6)=69780 J

e)

The power that Bolt must expend just to voercome the drag force is given by

P=\frac{\Delta E}{t}

where

\Delta E is the increase in internal energy due to the air drag

t is the time elapsed

Here we have:

\Delta E=69780 J

t = 8.69 s is the time elapsed

Substituting,

P=\frac{69780}{8.69}=8030 W

And we see that it is about twice larger than the power calculated in part c.

You might be interested in
A positive point charge q1 = +5.00 × 10−4C is held at a fixed position. A small object with mass 4.00×10−3kg and charge q2 = −3.
Lelechka [254]

Answer:

Therefore the speed of q₂ is 1961.19 m/s when it is 0.200 m from from q₁.

Explanation:

Energy conservation law: In isolated system the amount of total energy remains constant.

The types of energy are

  1. Kinetic energy.
  2. Potential energy.

Kinetic energy =\frac{1}{2} mv^2

Potential energy =\frac{Kq_1q_2}{d}

Here, q₁= +5.00×10⁻⁴C

q₂=-3.00×10⁻⁴C

d= distance = 4.00 m

V = velocity = 800 m/s

Total energy(E) =Kinetic energy+Potential energy

                      =\frac{1}{2} mv^2+ \frac{Kq_1q_2}{d}

                     =\frac{1}{2} \times 4.00\times 10^{-3}\times(800)^2 +\frac{9\times10^9\times 5\times10^{-4}\times(-3\times10^{-4})}{4}

                    =(1280-337.5)J

                    =942.5 J

Total energy of a system remains constant.

Therefore,

E =\frac{1}{2} mv^2 + \frac{Kq_1q_2}{d}

\Rightarrow  942.5 = \frac{1}{2} \times 4 \times10^{-3} \times V^2 +\frac{9\times10^{9}\times5\times 10^{-4}\times(-3\times 10^{-4})}{0.2}

\Rightarrow 942.5 = 2\times10^{-3}v^2 -6750

\Rightarrow 2 \times10^{-3}\times v^2= 942.5+6750

\Rightarrow v^2 = \frac{7692.5}{2\times 10^{-3}}

\Rightarrow v= 1961.19   m/s

Therefore the speed of q₂ is 1961.19 m/s when it is 0.200 m from from q₁.

5 0
3 years ago
Why are galaxies visible
sammy [17]
Because a galaxy is a large collection of many stars, and almost every star radiates some visible light.
4 0
3 years ago
A hot air balloon contains 85,000 moles of air. To what temperature must the
Oksi-84 [34.3K]

Answer:

B is the best answer for this question

8 0
3 years ago
The force exerted on the tires of a car that directly accelerate it along a road is exerted by the
azamat

The force exerted on the tires of a car that directly accelerate it along a road is exerted by the road friction.

<h3>What is force?</h3>

Force is defined as the product of mass and acceleration of an object.

Friction is defined as the force that resists the movement of an object over another.

Therefore, the force exerted on the tires of a car that directly accelerate it along a road is exerted by the road friction.

Learn more about force here:

brainly.com/question/12970081

#SPJ12

7 0
2 years ago
What is the equivalent resistance between the points A and B of the network?​
Dominik [7]

Explanation:

First, simplify the circuit. Then calculate the parallel and consecutive resistances to find the answer.

3 0
3 years ago
Other questions:
  • A mining crew extracted two different types of minerals from underground. Then, they transferred the same amount of energy into
    11·2 answers
  • Hell Im Fatima berry i need help PLZZ
    14·1 answer
  • A 1kg of compound a with specific heat capacity of 1000J is heated increasing its temp by 1 degree. How much energy has been add
    13·1 answer
  • a camel walks for 450 meters then hops on a bicycle and rides for 100 meters riding with a speed of 25 m/s in the same direction
    10·1 answer
  • Question 5 of 10
    6·1 answer
  • A particle of charge Q is fixed at the origin of an xy coordinate system. At t = 0 a particle (m = 0.959 g, q = 5.84 µC is locat
    7·1 answer
  • Give me the definition of quantum physics
    14·2 answers
  • If you launch a projectile at an angle greater than 45 ° it’s horizontal range will not reach as far as if you had launched it a
    11·2 answers
  • 14 What is the weight of each of
    5·1 answer
  • A charged comb contains 1000 electrons. Calculate the charge on the comb.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!