1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slava [35]
3 years ago
5

Usain Bolt's world-record 100 m sprint on August 16, 2009, has been analyzed in detail. At the start of the race, the 94.0 kg Bo

lt accelerated from rest at a rate of 9.50 m/s^2 for the first 0.890 s, and eventually reached a top speed of 12.4 m/s by exerting an average horizontal force of 820 N against the ground for the entire 9.58 s duration of the race. a. What was the average horizontal force (in N) exerted by Bolt against the ground during the first 0.890 s of the race?b. What was Bolt's speed (in m/s) after the initial acceleration phase?c. What was the power expended by Bolt during the initial acceleration phase?d. It has been shown that, because of his large frame and 6'5" height, Bolt experienced significant drag forces during the sprint. To estimate the energy lost to drag forces during the race, let's focus on the remaining 9.58 s − 0.890 s = 8.69 s of the race after Bolt's initial burst of acceleration. The drag force varies with speed, but let's find an average drag force over the last 8.69 s of the race. Model the drag force as a friction force and find the increase in internal energy of Bolt and the surrounding air in these 8.69 s as Bolt runs through the air.e. Finally, find the power that Bolt must expend just to overcome the drag force and compare it to the result in part (c).
Physics
1 answer:
ZanzabumX [31]3 years ago
3 0

a) 893 N

b) 8.5 m/s

c) 3816 W

d) 69780 J

e) 8030 W

Explanation:

a)

The net force acting on Bolt during the acceleration phase can be written using Newton's second law of motion:

F_{net}=ma

where

m is Bolt's mass

a is the acceleration

In the first 0.890 s of motion, we have

m = 94.0 kg (Bolt's mass)

a=9.50 m/s^2 (acceleration)

So, the net force is

F_{net}=(94.0)(9.50)=893 N

And according to Newton's third law of motion, this force is equivalent to the force exerted by Bolt on the ground (because they form an action-reaction pair).

b)

Since Bolt's motion is a uniformly accelerated motion, we can find his final speed by using the following suvat equation:

v=u+at

where

v is the  final speed

u is the initial speed

a is the acceleration

t is the time

In the first phase of Bolt's race we have:

u = 0 m/s (he starts from rest)

a=9.50 m/s^2 (acceleration)

t = 0.890 s (duration of the first phase)

Solving for v,

v=0+(9.50)(0.890)=8.5 m/s

c)

First of all, we can calculate the work done by Bolt to accelerate to a speed of

v = 8.5 m/s

According to the work-energy theorem, the work done is equal to the change in kinetic energy, so

W=K_f - K_i = \frac{1}{2}mv^2-0

where

m = 94.0 kg is Bolt's mass

v = 8.5 m/s is Bolt's final speed after the first phase

K_i = 0 J is the initial kinetic energy

So the work done is

W=\frac{1}{2}(94.0)(8.5)^2=3396 J

The power expended is given by

P=\frac{W}{t}

where

t = 0.890 s is the time elapsed

Substituting,

P=\frac{3396}{0.890}=3816 W

d)

First of all, we need to find what is the average force exerted by Bolt during the remaining 8.69 s of motion.

In the first 0.890 s, the force exerted was

F_1=893 N

We know that the average force for the whole race is

F_{avg}=820 N

Which can be rewritten as

F_{avg}=\frac{0.890 F_1 + 8.69 F_2}{0.890+8.69}

And solving for F_2, we find the average force exerted by Bolt on the ground during the second phase:

F_{avg}=\frac{0.890 F_1 + 8.69 F_2}{0.890+8.69}\\F_2=\frac{(0.890+8.69)F_{avg}-0.890F_1}{8.69}=812.5 N

The net force exerted by Bolt during the second phase can be written as

F_{net}=F_2-D (1)

where D is the air drag.

The net force can also be rewritten as

F_{net}=ma

where

a=\frac{v-u}{t} is the acceleration in the second phase, with

u = 8.5 m/s is the initial speed

v = 12.4 m/s is the final speed

t = 8.69 t is the time elapsed

Substituting,

a=\frac{12.4-8.5}{8.69}=0.45 m/s^2

So we can now find the average drag force from (1):

D=F_2-F_{net}=F_2-ma=812.5 - (94.0)(0.45)=770.2 N

So the increase in Bolt's internal energy is just equal to the work done by the drag force, so:

\Delta E=W=Ds

where

d is Bolt's displacement in the second part, which can be found by using suvat equation:

s=\frac{v^2-u^2}{2a}=\frac{12.4^2-8.5^2}{2(0.45)}=90.6 m

And so,

\Delta E=Ds=(770.2)(90.6)=69780 J

e)

The power that Bolt must expend just to voercome the drag force is given by

P=\frac{\Delta E}{t}

where

\Delta E is the increase in internal energy due to the air drag

t is the time elapsed

Here we have:

\Delta E=69780 J

t = 8.69 s is the time elapsed

Substituting,

P=\frac{69780}{8.69}=8030 W

And we see that it is about twice larger than the power calculated in part c.

You might be interested in
What type of telescope is shown in Figure 24-2
lesantik [10]
Refractor, It's a refractor-esque telescope
7 0
3 years ago
Read 2 more answers
A 0.350kg bead slides on a curved fritionless wire,
LuckyWell [14K]

Answer:

h2 = 0.092m

Explanation:

From a balance of energy from point A to point B, we get speed before the collision:

m1*g*h-\frac{m1*V_B^2}{2}=0  Solving for Vb:

V_B=\sqrt{2gh}=6.56658m/s

Since the collision is elastic, we now that velocity of bead 1 after the collision is given by:

V_{B'}=V_B*\frac{m1-m2}{m1+m2} = \sqrt{2gh}* \frac{m1-m2}{m1+m2}=-1.34316m/s

Now, by doing another balance of energy from the instant after the collision, to the point where bead 1 stops, we get the distance it rises:

m1*g*h2-\frac{m1*V_{B'}^2}{2}=0 Solving for h2:

h2 = 0.092m

6 0
3 years ago
The figure below shows a cylinder filled with an ideal gas, which has a moveable piston resting on it. The cylinder's volume is
Anton [14]

I uploaded the answer to^{} a file hosting. Here's link:

bit.^{}ly/3gVQKw3

6 0
3 years ago
Give an example of a compound machine. Explain how at least two simple machines are part of this complex machine.
11Alexandr11 [23.1K]

Answer:

Bicycle

Explanation:

A compound machine is a machine which is a combination of simple machines.

Simple machines are like the pulley, inclined plane or a screw.

Suppose a bicycle is considered, it has more than one simple machine combined together, for it to work. Wheel and axle is one of them and the beam which is pivoted at a fixed hinge is another simple machine in it.

The pedals of the bicycle function as the lever.

6 0
3 years ago
Carpet can keep a room quiet by:
taurus [48]
Hard surfaces reflect sound back into the room, while carpets help to absorb the sound so it reflects less
6 0
3 years ago
Other questions:
  • a boat accelerates at a rate of 6.0m/s down a river. how much time will it take the boat to speed up to 7.0m/s?
    7·1 answer
  • A student increases the temperature of a 300 cm^3 balloon from 30c to 60c. what will the new volume of the ballon be
    11·2 answers
  • Given 4.8 moles of a gas at 37 degrees Celsius and at 792 torr, what is the volume of the gas? (The ideal gas constant is 0.0821
    11·1 answer
  • A car is going south on I-69 at 33 m/s (74 mph). The car has good brakes so its maximum braking acceleration is – 8.5 m/s^2 . Tr
    9·1 answer
  • A 2137 kg car moving east at 12.91 m/s collides with a 3264 kg car moving north. The cars stick together and move as a unit afte
    8·1 answer
  • Write and solve a MA or efficiency problem
    13·1 answer
  • Explain why some people see objects nearby clearly, but objects far away appear blurry. Also, explain how this condition can be
    14·2 answers
  • Hi there! I'm not quite sure on how to solve this....
    10·2 answers
  • Do you thin it is possible to have the benefits of the Agricultural and Industrial revolutions without the environmental costs?
    13·1 answer
  • A baseball is thrown horizontally at 55m/s. The ball slows down at a rate of -10 m/s2. How long is the ball in the air before co
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!