1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slava [35]
3 years ago
5

Usain Bolt's world-record 100 m sprint on August 16, 2009, has been analyzed in detail. At the start of the race, the 94.0 kg Bo

lt accelerated from rest at a rate of 9.50 m/s^2 for the first 0.890 s, and eventually reached a top speed of 12.4 m/s by exerting an average horizontal force of 820 N against the ground for the entire 9.58 s duration of the race. a. What was the average horizontal force (in N) exerted by Bolt against the ground during the first 0.890 s of the race?b. What was Bolt's speed (in m/s) after the initial acceleration phase?c. What was the power expended by Bolt during the initial acceleration phase?d. It has been shown that, because of his large frame and 6'5" height, Bolt experienced significant drag forces during the sprint. To estimate the energy lost to drag forces during the race, let's focus on the remaining 9.58 s − 0.890 s = 8.69 s of the race after Bolt's initial burst of acceleration. The drag force varies with speed, but let's find an average drag force over the last 8.69 s of the race. Model the drag force as a friction force and find the increase in internal energy of Bolt and the surrounding air in these 8.69 s as Bolt runs through the air.e. Finally, find the power that Bolt must expend just to overcome the drag force and compare it to the result in part (c).
Physics
1 answer:
ZanzabumX [31]3 years ago
3 0

a) 893 N

b) 8.5 m/s

c) 3816 W

d) 69780 J

e) 8030 W

Explanation:

a)

The net force acting on Bolt during the acceleration phase can be written using Newton's second law of motion:

F_{net}=ma

where

m is Bolt's mass

a is the acceleration

In the first 0.890 s of motion, we have

m = 94.0 kg (Bolt's mass)

a=9.50 m/s^2 (acceleration)

So, the net force is

F_{net}=(94.0)(9.50)=893 N

And according to Newton's third law of motion, this force is equivalent to the force exerted by Bolt on the ground (because they form an action-reaction pair).

b)

Since Bolt's motion is a uniformly accelerated motion, we can find his final speed by using the following suvat equation:

v=u+at

where

v is the  final speed

u is the initial speed

a is the acceleration

t is the time

In the first phase of Bolt's race we have:

u = 0 m/s (he starts from rest)

a=9.50 m/s^2 (acceleration)

t = 0.890 s (duration of the first phase)

Solving for v,

v=0+(9.50)(0.890)=8.5 m/s

c)

First of all, we can calculate the work done by Bolt to accelerate to a speed of

v = 8.5 m/s

According to the work-energy theorem, the work done is equal to the change in kinetic energy, so

W=K_f - K_i = \frac{1}{2}mv^2-0

where

m = 94.0 kg is Bolt's mass

v = 8.5 m/s is Bolt's final speed after the first phase

K_i = 0 J is the initial kinetic energy

So the work done is

W=\frac{1}{2}(94.0)(8.5)^2=3396 J

The power expended is given by

P=\frac{W}{t}

where

t = 0.890 s is the time elapsed

Substituting,

P=\frac{3396}{0.890}=3816 W

d)

First of all, we need to find what is the average force exerted by Bolt during the remaining 8.69 s of motion.

In the first 0.890 s, the force exerted was

F_1=893 N

We know that the average force for the whole race is

F_{avg}=820 N

Which can be rewritten as

F_{avg}=\frac{0.890 F_1 + 8.69 F_2}{0.890+8.69}

And solving for F_2, we find the average force exerted by Bolt on the ground during the second phase:

F_{avg}=\frac{0.890 F_1 + 8.69 F_2}{0.890+8.69}\\F_2=\frac{(0.890+8.69)F_{avg}-0.890F_1}{8.69}=812.5 N

The net force exerted by Bolt during the second phase can be written as

F_{net}=F_2-D (1)

where D is the air drag.

The net force can also be rewritten as

F_{net}=ma

where

a=\frac{v-u}{t} is the acceleration in the second phase, with

u = 8.5 m/s is the initial speed

v = 12.4 m/s is the final speed

t = 8.69 t is the time elapsed

Substituting,

a=\frac{12.4-8.5}{8.69}=0.45 m/s^2

So we can now find the average drag force from (1):

D=F_2-F_{net}=F_2-ma=812.5 - (94.0)(0.45)=770.2 N

So the increase in Bolt's internal energy is just equal to the work done by the drag force, so:

\Delta E=W=Ds

where

d is Bolt's displacement in the second part, which can be found by using suvat equation:

s=\frac{v^2-u^2}{2a}=\frac{12.4^2-8.5^2}{2(0.45)}=90.6 m

And so,

\Delta E=Ds=(770.2)(90.6)=69780 J

e)

The power that Bolt must expend just to voercome the drag force is given by

P=\frac{\Delta E}{t}

where

\Delta E is the increase in internal energy due to the air drag

t is the time elapsed

Here we have:

\Delta E=69780 J

t = 8.69 s is the time elapsed

Substituting,

P=\frac{69780}{8.69}=8030 W

And we see that it is about twice larger than the power calculated in part c.

You might be interested in
If a triangle is a right triangle, then the other two angles must be acute. true or false
skelet666 [1.2K]
That depends on which angle you picked first, because that determines
which angles "the other two" are.

If you picked the right angle (90°) first, before you asked the question,
then the other two are acute angles, and they're also complementary
5 0
4 years ago
Describe how wet and dry barometers work
siniylev [52]

Answer: Wet barometer - The tool works by measuring atmospheric pressure to predict incoming weather. Since the glass is only filled halfway with water, the other half is exposed to the atmosphere. When the outdoor atmospheric pressure rises, the pressure in the glass decreases, and causes the water to move down the spout.

Dry barometer - A Torricellian barometer (sometimes called a mercury barometer) is an inverted (upside-down) glass tube standing in a bath of mercury. Air pressure pushes down on the surface of the mercury, making some rise up the tube. The greater the air pressure, the higher the mercury rises.

I hope this helps!

7 0
3 years ago
Give an example of an atom that will give up its outermost electron easily. Explain why you chose this atom.
BARSIC [14]

Answer:

Cesium (Cs)

very low electronegativity

there are a bunch of cool videos online about Cesium reacting with water

most are faked but the general idea is a cool one as Cesium very quickly and easily gives up it's one and only outermost (or valence) electron

Explanation:

4 0
3 years ago
The temperature differences seen between quito, ecuador, and guayaquil, ecuador, illustrate the effect of _____. ocean currents
Leya [2.2K]
The answer is altitude(:
5 0
3 years ago
Read 2 more answers
What is the magnitude of g at a height above Earth's surface where free-fall acceleration equals 6.5m/s^2?
prohojiy [21]

You've given the answer, right there in your question.

The "magnitude of gravity" is described in terms of the acceleration
due to it, and you just told us what that is.

We can also notice that the figure you gave is about 0.66 of the
acceleration due to gravity on the Earth's surface. That tells us that
the distance from the Earth's center at that height is about 

                     (1 / √0.66) = 1.23 times

the Earth's radius, so the height is about  910 miles above the surface.


7 0
3 years ago
Other questions:
  • A beam of helium-3 atoms (m = 3.016 u) is incident on a target of nitrogen-14 atoms (m = 14.003 u) at rest. During the collision
    6·1 answer
  • According to freud what part of the mind is concerned with morals and ethics
    6·1 answer
  • How kind of cells have cell wall
    5·1 answer
  • A child pulls a wagon 3.0 m using a force of 55 N at an angle 35° above horizontal. The force of friction on the wagon is 12 N.
    5·1 answer
  • When 1 carbon atom combines with 2 oxygen atoms, the resulting substance is called?
    14·1 answer
  • A 2290 kg car traveling at 10.5 m/s collides with a 2780 kg car that is initially at rest at the stoplight. The cars stick toget
    9·1 answer
  • When you explain a solar eclipse, waht are you making/doing?
    7·1 answer
  • When drawing up liquid into a micropipette, put the tip in the liquid at a Choose... degree angle, push the plunger to the Choos
    5·1 answer
  • What type of wave does NOT need matter to carry energy? *
    14·1 answer
  • Part B Next you'll investigate how precipitation varies throughout Earth. Visit the My NASA Data e website and select Data Set i
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!