1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erik [133]
3 years ago
5

A steel cable with Cross Sectional Area 3.00cm² has an elastic limit of 2.40 x 10^8pascals. Find the maximum upward acceleration

that can be given a 1200kg elevated supported by the cable if the stress is not to exceed one-third of the elastic limit.​
Physics
1 answer:
bazaltina [42]3 years ago
3 0

Answer:

Stress = F / A       force per unit area

A = 3.00 cm^2 = 3 E-4  m^2

F = 2.4E8 N/m^2 * 3E-4 m^2 = 7.2E4 N    max force applied

F/3 = 2.4E4 N  if force not to exceed limit   (= f)

f = M a

a = 2.4 E4 N / 1.2 E3 kg = 20 m / s^2      about 2 g

You might be interested in
Bill throws a tennis ball to his dog. He throws the ball at a speed of 15 m/s at an angle of 30° to the horizontal. Assume he th
Sidana [21]

1a) Bill and the dog must have a speed of 13.0 m/s

1b) The speed of the dog must be 22.5 m/s

2a) The ball passes over the outfielder's head at 3.33 s

2b) The ball passes 1.2 m above the glove

2c) The player can jump after 2.10 s or 3.13 s after the ball has been hit

2d) One solution is when the player is jumping up, the other solution is when the player is falling down

Explanation:

1a)

The motion of the ball in this problem is a projectile motion, so it follows a parabolic path which consists of two independent motions:

- A uniform motion (constant velocity) along the horizontal direction

- An accelerated motion with constant acceleration (acceleration of gravity) in the vertical direction

In part a), we want to know at what speed Bill and the dog have to run in order to intercept the ball as it lands on the ground: this means that Bill and the dog must have the same velocity as the horizontal velocity of the ball.

The ball's initial speed is

u = 15 m/s

And the angle of projection is

\theta=30^{\circ}

So, the ball's horizontal velocity is

v_x = u cos \theta = (15)(cos 30)=13.0 m/s

And therefore, Bill and the dog must have this speed.

1b)

For this part, we have to consider the vertical motion of the ball first.

The vertical position of the ball at time t is given by

y=u_yt+\frac{1}{2}at^2

where

u_y = u sin \theta = (15)(sin 30) = 7.5 m/s is the initial vertical velocity

a=g=-9.8 m/s^2 is the acceleration of gravity

The ball is at a position of y = 2 m above the ground when:

2=7.5t + \frac{1}{2}(-9.8)t^2\\4.9t^2-7.5t+2=0

Which has two solutions: t=0.34 s and t=1.19 s. We are told that the ball is falling to the ground, so we have to consider the second solution, t = 1.19 s.

The horizontal distance covered by the ball during this time is

d=v_x t =(13.0)(1.19)=15.5 m

The dog must be there 0.5 s before, so at a time

t' = t - 0.5 = 0.69 s

So, the speed of the dog must be

v_x' = \frac{d}{t'}=\frac{15.5}{0.69}=22.5 m/s

2a)

Here we just need to consider the horizontal motion of the ball.

The horizontal distance covered is

d=98 m

while the horizontal velocity of the ball is

v_x = u cos \theta = (34)(cos 30)=29.4 m/s

where u = 34 m/s is the initial speed.

So, the time taken for the ball to cover this distance is

t=\frac{d}{v_x}=\frac{98}{29.4}=3.33 s

2b)

Here we need to calculate the vertical position of the ball at t = 3.33 s.

The vertical position is given by

y= h + u_y t + \frac{1}{2}at^2

where

h = 1.2 m is the initial height

u_y = u sin \theta = (34)(sin 30)=17.0 m/s is the initial vertical velocity

a=g=-9.8 m/s^2 is the acceleration of gravity

Substituting t = 3.33 s,

y=1.2+(17)(3.33)+\frac{1}{2}(-9.8)(3.33)^2=3.5 m

And sinc the glove is at a height of y' = 2.3 m, the difference in height is

y - y' = 3.5 - 2.3 = 1.2 m

2c)

In order to intercept the ball, he jumps upward at a vertical speed of

u_y' = 7 m/s

So its position of the glove at time t' is

y'= h' + u_y' t' + \frac{1}{2}at'^2

where h' = 2.3 m is the initial height of the glove, and t' is the time from the moment when he jumps. To catch the ball, the height must be

y' = y = 3.5 m (the height of the ball)

Substituting and solving for t', we find

3.5 = 2.3 + 7t' -4.9t'^2\\4.9t'^2-7t'+12 = 0

Which has two solutions: t' = 0.20 s, t' = 1.23 s. But this is the time t' that the player takes to reach the same height of the ball: so the corresponding time after the ball has been hit is

t'' = t -t'

So we have two solutions:

t'' = 3.33 s - 0.20 s = 3.13 s\\t'' = 3.33 s - 1.23 s = 2.10 s

So, the player can jump after 2.10 s or after 3.13 s.

2d)

The reason for the two solutions is the following: the motion of the player is a free fall motion, so initially he jump upwards, then because of gravity he is accelerated downward, and therefore eventually he reaches a maximum height and then he  falls down.

Therefore, the two solutions corresponds to the two different part of the motion.

The first solution, t'' = 2.10 s, is the time at which the player catches the ball while he is in motion upward.

On the other hand, the second solution t'' = 3.13 s, is the time at which the player catches the ball while falling down.

Learn more about projectile motion:

brainly.com/question/8751410

#LearnwithBrainly

7 0
3 years ago
What is the unit of velocity ratio and mechanical advantage and why​
alexandr402 [8]
Both don’t have units beacuse they are ratios
8 0
3 years ago
Explain three ways visual aids help you study
Katen [24]
Visual aids are tools that help to make an issue or lesson clearer or easier to understand and know (pictures, models, charts, maps, videos, slides, real objects etc.). ... Visual aids are those devices which are used in classrooms to encourage students learning process and make it easier and interesting.
7 0
2 years ago
Eating an orange enables a person to perform about 3.5x10^4 J of work. To what height does eating and orange enable a 55kg woman
crimeas [40]
Joules is a unit for work which may decomposed into N.m. Work is a quantity which is a product of force (in this case, the woman's weight) and the distance she has traveled. 
 
                                    W = F x d      ;    d = W / F

Substituting the given, 
  
                             d = (3.5 x 10^4 J) / (55 kg x 9.8 m/s²) = 64.94 m

Thus, the woman can climb up to 64.94 meters. 

3 0
3 years ago
Read 2 more answers
A student places two books on a table. One book weighs less than the other book
Gnoma [55]
The book that weighs less
6 0
2 years ago
Other questions:
  • Which of the following lists the Earth’s layers in order from hottest to coldest in temperature?
    5·2 answers
  • PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!!
    7·1 answer
  • Suppose you have 50 grams of isotope with a half life of 2 years. How much is the isotope will you have after 4 years
    9·1 answer
  • A large sheet of charge has a uniform charge density of 9  μCm2. What is the electric field due to this charge at a point just
    6·1 answer
  • If you ride your bicycle down a straight road for 500 m then turn around and ride back your distance is your displacement a.Grea
    13·1 answer
  • Can velocity of an object be negative when it’s acceleration is positive?
    9·2 answers
  • A 75 kg football player is gliding forward across very smooth ice at 4.6 m/s. He throws a 0.47 kg football straight forward. A)
    13·1 answer
  • Help me ultra sound vs infrasound
    6·1 answer
  • When a student stands on a rotating table
    10·2 answers
  • A mother (mass 60.0 kg) skates across an ice rink with negligible friction toward her child (mass 20.0 kg), who is standing stil
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!