Answer:
<em>600N.</em>
Explanation:
From the question, we are to calculate the net force acting on the car.
According to Newton's second law of motion:
F = ma
m is the mass of the car
a is the acceleration = change in velocity/Time
a = v-u/t
F = m(v-u)/t
v is the final velocity = 30m/s
u is the initial velocity = 20m/s
t is the time = 5secs
m = 300kg
Get the net force:
Recall that: F = m(v-u)/t
F = 300(30-20)/5
F = 60(30-20)
F = 60(10)
<em>F = 600N</em>
<em>Hence the net force acting on the car is 600N.</em>
<em></em>
<em></em>
The weight of the meterstick is:
and this weight is applied at the center of mass of the meterstick, so at x=0.50 m, therefore at a distance
from the pivot.
The torque generated by the weight of the meterstick around the pivot is:
To keep the system in equilibrium, the mass of 0.50 kg must generate an equal torque with opposite direction of rotation, so it must be located at a distance d2 somewhere between x=0 and x=0.40 m. The magnitude of the torque should be the same, 0.20 Nm, and so we have:
from which we find the value of d2:
So, the mass should be put at x=-0.04 m from the pivot, therefore at the x=36 cm mark.
Answer:
10.4 m/s
Explanation:
The problem can be solved by using the following SUVAT equation:
where
v is the final velocity
u is the initial velocity
a is the acceleration
t is the time
For the diver in the problem, we have:
is the initial velocity (positive because it is upward)
is the acceleration of gravity (negative because it is downward)
By substituting t = 1.7 s, we find the velocity when the diver reaches the water:
And the negative sign means that the direction is downward: so, the speed is 10.4 m/s.
I believe you forgot to add the choices. I will tell you some of the characteristics of mixtures and I hope you find one of them in the choices you have.
A mixture is a physical combination between two or more elements. No chemical reaction is involved in the formation of mixtures.
The components of the mixture can be separated using physical methods such as filtration, boiling and condensation.
Examples of mixtures include mixture of sugar and water or mixture of salt and sugar.
Explanation:
Fgravity = G*(mass1*mass2)/D²
G is the gravitational constant throughout the universe.
D is the distance between both objects.
D is now reduced by a factor of 5, meaning Dnew = D/5 we get
Fgravitynew = G*(mass1*mass2)/(D/5)² =
= G*(mass1*mass2)/(D²/25) =
= 25* G*(mass1*mass2)/D² = 25* Fgravity
the new force of gravity/attraction is 25×16 = 400 units.