I hope it's not too late, but here you go
By definition we have to:
Applied force: It is the external force that acts directly on a body.
Therefore, we can say that if you have an object and push it towards yourself, you are exerting an external force on the object.
This external force was not acting on the object previously, therefore, it is a force that you are applying at that moment.
Answer:
you exert an Applied Force on an object when you pull it towards you
A. Applied Force
Let's call the constant acceleration a.
At a time t, its speed will thus be v(t)=a*t+v0 where v0 is its initial speed, here 10 m/s. Hence v(t)=a*t+10.
From there we can deduce the position P(t)=a*t^2/2+10t+p0 where p0 is the initial position, here 0.
Hence P(t)=a*t^2/2+10t
Let's call T the time at which it's at 50 m/s, we know that P(T)=225m and that v(T)=50 m/s hence a*T+10=50 thus a=40/T and P(T)=(40/2+10)T=30T
Hence T=225/30=7.5
It took 7.5 seconds
Answer:
Take-off velocity = v = 81.39[m/s]
Explanation:
We can calculate the takeoff speed easily, using the following kinematic equation.

where:
a = acceleration = 4[m/s^2]
x = distance = 750[m]
vi = initial velocity = 25 [m/s]
vf = final velocity
![v_{f}=\sqrt{(25)^{2}+(2*4*750) } \\v_{f}=81.39[m/s]](https://tex.z-dn.net/?f=v_%7Bf%7D%3D%5Csqrt%7B%2825%29%5E%7B2%7D%2B%282%2A4%2A750%29%20%7D%20%5C%5Cv_%7Bf%7D%3D81.39%5Bm%2Fs%5D)
The optimal angle of 45° for maximum horizontal range is only valid when initial height is the same as final height.
<span>In that particular situation, you can prove it like this: </span>
<span>initial velocity is Vo </span>
<span>launch angle is α </span>
<span>initial vertical velocity is </span>
<span>Vv = Vo×sin(α) </span>
<span>horizontal velocity is </span>
<span>Vh = Vo×cos(α) </span>
<span>total time in the air is the the time it needs to fall back to a height of 0 m, so </span>
<span>d = v×t + a×t²/2 </span>
<span>where </span>
<span>d = distance = 0 m </span>
<span>v = initial vertical velocity = Vv = Vo×sin(α) </span>
<span>t = time = ? </span>
<span>a = acceleration by gravity = g (= -9.8 m/s²) </span>
<span>so </span>
<span>0 = Vo×sin(α)×t + g×t²/2 </span>
<span>0 = (Vo×sin(α) + g×t/2)×t </span>
<span>t = 0 (obviously, the projectile is at height 0 m at time = 0s) </span>
<span>or </span>
<span>Vo×sin(α) + g×t/2 = 0 </span>
<span>t = -2×Vo×sin(α)/g </span>
<span>Now look at the horizontal range. </span>
<span>r = v × t </span>
<span>where </span>
<span>r = horizontal range = ? </span>
<span>v = horizontal velocity = Vh = Vo×cos(α) </span>
<span>t = time = -2×Vo×sin(α)/g </span>
<span>so </span>
<span>r = (Vo×cos(α)) × (-2×Vo×sin(α)/g) </span>
<span>r = -(Vo)²×sin(2α)/g </span>
<span>To find the extreme values of r (minimum or maximum) with variable α, you must find the first derivative of r with respect to α, and set it equal to 0. </span>
<span>dr/dα = d[-(Vo)²×sin(2α)/g] / dα </span>
<span>dr/dα = -(Vo)²/g × d[sin(2α)] / dα </span>
<span>dr/dα = -(Vo)²/g × cos(2α) × d(2α) / dα </span>
<span>dr/dα = -2 × (Vo)² × cos(2α) / g </span>
<span>Vo and g are constants ≠ 0, so the only way for dr/dα to become 0 is when </span>
<span>cos(2α) = 0 </span>
<span>2α = 90° </span>
<span>α = 45° </span>