The coefficients in a chemical equation represent the molar ratio of the substances.
For example, if an equation says 2H2 + O2 ⇒ 2H2O, it means
2 moles of H2 + 1 mol of O2 ⇒ 2 moles of H2O.
Answer:
823.7g
Explanation:
Using the formula as follows:
Q = m × c × ∆T
Where;
Q = amount of heat (J)
m = mass of substance (g)
c = specific heat capacity (J/g°C)
∆T = change in temperature (°C)
Using the information given in this question as follows:
Q = 6,400 J
m = ?
c of soil = 0.840 J/g°C
∆T = 9.25°C
Using Q = mc∆T
m = Q ÷ c∆T
m = 6,400 ÷ (0.840 × 9.25)
m = 6400 ÷ 7.77
m = 823.7g
Mass of CaCl₂ = 0.732 g
<h3>Further explanation</h3>
The concentration of a substance can be expressed in several quantities such as moles, percent (%) weight / volume,), molarity, molality, parts per million (ppm) or mole fraction. The concentration shows the amount of solute in a unit of the amount of solvent.

Answer:
CH₃CO₂H + H₂O ⇄ CH₃CO₂⁻ + H₃O⁺
Explanation:
A buffer is defined as the mixture of a weak acid and its conjugate base or vice versa.
For the acetic acid buffer, CH₃CO₂H is the weak acid and its conjugate base is the ion without H⁺, that is CH₃CO₂⁻. The equilibrium equation in water knowing this is:
<h3>CH₃CO₂H + H₂O ⇄ CH₃CO₂⁻ + H₃O⁺</h3>
<em>In the equilibrium, the acid is dissociated in the conjugate base and the hydronium ion.</em>