The wall exerts a force of equal magnitude but in the opposite direction. So the force by the wall is 10 N to the right.
Its larger and if u where wondering to positive ions are smaller
Answer: The bug will remain motionless
Explanation:
According to Newton's first Law of Motion (sometimes called Law of Inertia):
<em>An object at rest or describing a uniform straight line motion (moving at constant velocity), will remain at rest or moving unless an external force is applied to it and changes its state of rest or motion.
</em>
In other words:
An object or body will keep its state of motion until an external force changes its state
This means that objects tend to remain in its state of motion, and is the definition of the inertia, as well.
In addition, according to his law, an object in rest can be in equilibrium (net force equals to zero), and a moving object can also be in equilibrium, as long as it keeps a constant velocity.
<h2>
This is why the bug, which is at rest will remain at rest, although the ants are simultaneously pulling it in different directions, since the resultant of all these forces is zero.</h2>
We want to calculate the distance covered by the drag racer. Recall, the formula for calculating distance is expressed as
Distance = speed x time
From the information given,
speed = 320 m/s
time = 4.5 s
By substituting these values into the formula, we have
Distance = 320 m/s x 4.5s
s cancels out. We are left with m. Thus,
Distance = 1440m
Answer:
Heat energy required (Q) = 3,000 J
Explanation:
Find:
Mass of water (M) = 200 g
Change in temperature (ΔT) = 15°C
Specific heat of water (C) = 1 cal/g°C
Find:
Heat energy required (Q) = ?
Computation:
Q = M × ΔT × C
Heat energy required (Q) = Mass of water (M) × Change in temperature (ΔT) × Specific heat of water (C)
Heat energy required (Q) = 200 g × 15°C × 1 cal/g°C
Heat energy required (Q) = 3,000 J