Answer:
Photon of light
Explanation:
According to Bohr's model of the atom, electrons in atoms are found in specific energy levels. These energy levels are called stationary states, an electrons does not radiate energy when it occupies any of these stationary states.
However, an electron may absorb energy and move from one energy level or stationary state to another. The energy difference between the two energy levels must correspond to the energy of the photon of light absorbed in order to make the transition possible.
Since electrons are generally unstable in excited states, the electron quickly jumps back to ground states and emits the excess energy absorbed. The frequency or wavelength of the emitted photon can now be measured and used to characterize the transition. This is the principle behind many spectrometric and spectrophotometric methods.
Answer:
Kp = 0.049
Explanation:
The equilibrium in question is;
2 SO₂ (g) + O₂ (g) ⇄ 2 SO₃ (g)
Kp = p SO₃² / ( p SO₂² x p O₂ )
The initial pressures are given, so lets set up the ICE table for the equilibrium:
atm SO₂ O₂ SO₃
I 3.3 0.79 0
C -2x -x 2x
E 3.3 - 2x 0.79 - x 2x
We are told 2x = partial pressure of SO₃ is 0.47 atm at equilibrium, so we can determine the partial pressures of SO₂ and O₂ as follows:
p SO₂ = 3.3 -0.47 atm = 2.83 atm
p O₂ = 0.79 - (0.47/2) atm = .56 atm
Now we can calculate Kp:
Kp = 0.47² /[ ( 2.83 )² x 0.56 ] = 0.049 ( rounded to 2 significant figures )
Note that we have extra data in this problem we did not need since once we setup the ICE table for the equilibrium we realize we have all the information needed to solve the question.
The loss of electron from an results in the formation of cation represented by the positive charge on the element whereas gaining of electron results in the formation of anion represented by the negative charge on the element.
The alkali earth metal beryllium () belongs to the second group of the periodic table. The ground state electronic configuration of is:
From the electronic configuration it is clear that it has 2 valence electrons in its valence shell ().
After losing all valence electrons that is 2 electrons from orbital. The electronic configuration will be:
Since, lose of electron is represented by positive charge on the element symbol. So, the beryllium will have +2 charge on its symbol as .
Hence, beryllium will have 2+ charge on it after losing all its valence electrons in the chemical reaction.
Answer:
Group 7A
Explanation:
The group 7A elements consists of the most reactive non-metals on the periodic table.
This group is known as the group of halogens. They consist of element fluorine, chlorine, bromine, iodine and astatine.
- The elements in this group have the highest electronegativity values.
- They have 7 valence electrons and requires just one electron to complete their octets.
- This way, they are highly reactive in their search for that single electron.