Answer: 1 mol of
will be produced from this reaction.
Explanation: Reaction follows,

As seen from the balanced chemical equation above, we get
For every 3 moles of Aluminium and 3 moles of
, 1 mole of
is formed.
For every 3 moles of Aluminium and 3 moles of
, 1 mole of
is formed.
For every 3 moles of Aluminium and 3 moles of
, 3 moles of
is formed.
For every 3 moles of Aluminium and 3 moles of
, 6 moles of
is formed.
Answer:- C. H
Explanations:- Reduction is gain of electron. In other words we could say that decrease in oxidation number is reduction.
As per the rules, oxidation number of hydrogen in its compounds is +1(except metal hydrides) and the oxidation number of oxygen in its compounds is -2.
The oxidation number in elemental form is zero.
In
, the oxidation number of H is +1 and oxidation number of O is -2. Oxidation number of Cl in
is -1. On product side, the oxidation number of hydrogen in
is zero and in
the oxidation number of H is +1 and that of O is -2. Oxidation number of Cl in
is 0.
From above data, Oxidation number of O is -2 on both sides so it is not reduced.
Oxidation number of Cl is changing from -1 to 0 which is oxidation.
Oxidation number of H is changing from +1 to 0 which is reduction.
So, the right choice is C.H
Ok, after doing an immense amount of research I came up with the most logical answer.
A. Is indicated by a negative enthrall sign.
Reasoning: an endothermic reaction is ice melting and the energy being more than its surroundings. Not specified to ice but as an example, ice is endothermic. That puts d and b out of the running leaving you left with a and c.
When I searched up enthalpy, it said “When a substance changes at constant pressure, enthalpy tells how much heat and work was added or removed from the substance.” Which is similar to c, right? Yeah, meaning both a and c are similar in that aspect.
The reason I decided to go with a is because heat is NOT released into the surrounding, exothermic reactions release energy and heat into the surrounding.
Answer:
202 L
Explanation:
Step 1: Write the balanced equation
C₆H₁₂O₆ + 6 O₂(g) ⇒ 6 CO₂(g) + 6 H₂O(l)
Step 2: Calculate the moles corresponding to 270 g of C₆H₁₂O₆
The molar mass of C₆H₁₂O₆ is 180.16 g/mol.
270 g × 1 mol/180.16 g = 1.50 mol
Step 3: Calculate the moles of CO₂ generated from 1.50 moles of glucose
The molar ratio of C₆H₁₂O₆ to CO₂ is 1:6. The moles of CO₂ formed are 6/1 × 1.50 mol = 9.00 mol
Step 4: Calculate the volume of 9.00 moles of CO₂ at STP
The volume of 1 mole of an ideal gas at STP is 22.4 L.
9.00 mol × 22.4 L/mol = 202 L
The appropriate response is Mg2+. It has the smallest radius the would mean the littlest separation from it's the furthest shell to the core
Since magnesium has one less shell that calcium, Mg would have a little nuclear range. Besides, a particle of a component will have a little nuclear sweep than it's molecule be utilized as a part of its particle frame it has lost a shell