The reaction for burning of charcoal or complete combustion is as follows:

From the above balanced reaction, 1 mole of carbon releases 1 mole of
gas.
Converting mass of charcoal into moles as follows:

Molar mass of pure carbon is 12 g/mol thus,

The same moles of
is released. Converting these moles into mass as follows:
m=n×M
Molar mass of
is 44 g/mol thus,

Converting mass into kg,

Thus, total mass of gas released is 5.5 kg.
Answer:
The less mass in a given volume of air the less dense the air is going to be.
Answer:
Explanation:
From the statement of the problem,
B₂S₃
+ H₂O
→ H₃BO₃
+ H₂S
B₂S₃ + H₂O → H₃BO₃ + H₂S
We that the above expression does not conform with the law of conservation of mass:
To obey the law, we need to derive a balanced reaction equation:
Let us use the mathematical method to obtain a balanced equation.
let the balanced equation be:
aB₂S₃ + bH₂O → cH₃BO₃ + dH₂S
where a, b, c and d will make the equation balanced.
Conservating B: 2a = c
S: 3a = d
H: 2b = 3c + 2d
O: b = 3c
if a = 1,
c = 2,
b = 6,
2d = 2(6) - 3(2) = 6, d = 3
Now we can input this into our equation:
B₂S₃ + 6H₂O → 2H₃BO₃ + 3H₂S
B₂S₃
+ 6H₂O
→ 2H₃BO₃
+ 3H₂S
Answer:
0
Explanation:
To calculate, the mass of Carbondioxide is 3.45mg
Then the decomposition of Carbondioxide gives 0 on calculation